

E0407

TEOREMA DA CONVERGÊNCIA DE DOOB PARA SUPERMARTINGALES L¹

Rafael Andretto Castrequini (Bolsista PIBIC/CNPq), Alberto Masayoshi Faria Ohashi (Colaborador) e Prof. Dr. Pedro José Catuogno (Orientador), Instituto de Matemática, Estatística e Computação Científica - IMECC, UNICAMP

Teoria de Martingales é uma ferramenta de grande importância pelo fato de que se enquadra em vários contextos, como por exemplo: Teoria de Probabilidade, Analise Funcional, Teoria da Difusão, Teoria de equações diferenciais parciais, etc.. Nesse projeto estudamos alguns princípios básicos do cálculo estocástico e suas aplicações na Teoria de equações diferenciais estocásticas. Para exemplificar nosso trabalho, apresentaremos um resultado fundamental da Teoria de Martingales, o teorema de convergência de Doob: Seja X=(Xn) um supermartingale para a filtração {Fn} limitado em L¹(Ω ,F,P), onde (Ω ,F,P) é um espaço de probabilidade. Então existe o limite limXn q.c. e é finito. Ainda mais se definirmos $X_{\infty}(\omega)$:=limsupXn(ω) para todo ω em Ω , então X_{∞} =lim X_n e é finito. No caso que. X=(X_n) um martingale temos que E(X_{∞} | Fn) = X_n . É de grande importância o conhecimento da variável aleatória X_{∞} , pois ela retém toda a informação que o processo X oferece.

Martingale - Doob - Probabilidade