E318

ESTUDO TEÓRICO DA SUPERFÍCIE DE ENERGIA POTENCIAL ENVOLVIDA NA REAÇÃO EM FASE GASOSA X⁻ + H₃AY = XAH₃ + Y⁻ (X, Y = F, CL, BR, I ; A = C, SI, GE, SN)

Maurício Chagas da Silva (Bolsista FAPESP) e Prof. Dr. Nelson Henrique Morgon (Orientador), Instituto de Química - IQ, UNICAMP

O estudo teórico de sistemas químicos vem auxiliando no tratamento de dados experimentais, graças ao desenvolvimento de novas metodologias teóricas que permitem melhor descrever as características químicas e físicas desses sistemas. As reações de substituição nucleofílica de haletos são, do ponto de vista sintético, muito importantes, pois é uma rota sintética muito utilizada na preparação de inúmeros reagentes de partida que são amplamente empregados em sínteses orgânicas e inorgânicas. Utilizando-se cálculos teóricos (HF e MP2), estudou-se a superfície potencial da reação X + H₃AY = XAH₃ + Y (X, Y = F, Cl, Br e I ; A = C, Si, Ge e Sn) em fase gasosa. Para isso foi necessário utilizar um conjunto de bases ajustadas a pseudopotenciais, desenvolvidas através do método da "coordenada geradora". Assim, foi possível caracterizar a ordem de nucleofilicidade dos haletos (F > Cl > Br > I) em fase gasosa bem como a ordem de reatividade química dos eletrófilos (FAH₃ < ClAH₃ < BrAH₃ < IAH₃). Assim, através das metodologias utilizadas caracterizou-se o sistema químico estudado, onde seus aspectos físico-químicos estavam de acordo com tendências químicas observadas na literatura. Química Teórica - Reações S_N2 - Superfície Potencial