XII Congresso 22 a 24 de setembro de 2004 Interno de Iniciação Científica da UNICAMP Ginásio Multidisciplinar da UNICAMP

E257

AMBIENTE PARA ANIMAÇÃO DE ALGORITMOS DISTRIBUÍDOS BASEADO NA CONSTRUÇÃO PROGRESSIVA DE CHECKPOINTS GLOBAIS CONSISTENTES

Raphael Marcos Menderico (Bolsista FAPESP) e Profa. Dra. Islene Calciolari Garcia (Orientadora), Instituto de Computação – IC, UNICAMP

Para obtermos uma visualização de um algoritmo, podemos construir visões progressivas a partir da execução de um programa, e então utilizar um ambiente gráfico para gerar uma animação, que permita a observação da seqüência de ações executadas. Entretanto, quando tratamos de ambientes distribuídos, cada processo participante do ambiente somente tem conhecimento sobre a sua própria execução e obtém informações dos outros processos através da troca de mensagens. A abordagem nesse caso é obter um conjunto de estados, um de cada processo, que poderia ser obtida por um observador onisciente externo. Esse conjunto de estados locais é chamado de estado global consistente. O objetivo desse trabalho é a especificação e implementação de um ambiente para animação de algoritmos distribuídos, baseado em construções progressivas de *checkpoints* globais consistentes, que permitam a construção de uma seqüência de ações a partir da execução real de uma aplicação distribuída. Esse ambiente permite analisar o funcionamento dos algoritmos de *checkpointing* e de construção de visões progressivas, podendo também ser utilizado como ferramenta de ensino e de análise de algoritmos distribuídos.

Algoritmos Distribuídos- Tolerância a Falhas- checkpointing - Animação de Algoritmos