XII Congresso 22 a 24 de setembro de 2004 Interno de Iniciação Científica da UNICAMP Ginásio Multidisciplinar da UNICAMP

T879

PROCESSO DE ADSORÇÃO DE SO2 EM ARGILA EM SISTEMA DE LEITO FLUIDIZADO

Marcelo Maia Freire de Oliveira (Bolsista PIBIC/CNPq) e Profa. Dra. Meuris Gurgel Carlos da Silva (Orientadora), Faculdade de Engenharia Química – FEQ, UNICAMP

A poluição atmosférica é, entre os problemas ambientais, uns dos mais graves e complexos devido a sua forma de dispersão dos poluentes na atmosfera e as reacões fotoguímicas que acontecem entre eles. Dentre os poluentes no meio, o dióxido de enxofre merece atenção especial pelos efeitos nocivos que causam ao ambiente e aos seres vivos. Com relação às tecnologias de dessulfurização dos resíduos gasosos, o processo de adsorção em leito fluidizado tem encontrado bom potencial de aplicação, visto que sua fluidodinâmica favorece o contato gás-sólido e a mistura das partículas; sendo a eficiência da adsorção nesse sistema função das características físicas e químicas do adsorvente e dos mecanismos de adsorção sob aspectos termodinâmicos e cinéticos da reação. Esse trabalho, de caráter experimental, utilizou argila do tipo esmectita (proveniente da Paraíba). O desenvolvimento foi realizado seguindo as seguintes etapas: Classificação do adsorvente faixas distintas de diâmetros de partículas, 0,36mm e 0,46 mm. Caracterização física do adsorvente na qual foram obtidas a área superficial; porosidade, tamanho e distribuição dos poros; e massa específica. A distribuição volumétrica dos poros para ambos diâmetros de partícula mostram a predominância de mesoporos. Testes fluidodinâmicos do sistema que definiram os diâmetros 0,36 e 0,46 mm como favoráveis a fluidização. Finalmente foram efetuados os ensaios de adsorção, sendo a concentração do SO₂ determinada pelo método calorimétrico, ou método do peróxido de hidrogênio.

Fluidização - Adsorção - Argila