Processos de magnetização em pseudo-válvulas de spin baseadas em filmes de CoCrPt

Vinícius S. Vianna*, Fanny Béron, Marcos V. Puydinger

Resumo

Estudou-se a inversão magnética de filmes finos de CoCrPt separados por diferentes expessuras de Ti, assim como o efeito da magneto resistência de sistemas de pseudo-válvulas de spin. O trabalho analiza os dados obtidos nos experimentos magnetoestáticos e magneto-elétricos relacionando-os com as espessuras de Ti entre as camadas magnéticas.

Palavras-chave:

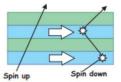
Magneto Resistência Gigante, Pseudo-Válvulas de Spin, Spintrônica.

Introdução

Multicamadas de filmes finos de CoCrPt intercaladas com camadas de Ti formam pseudoválvulas de spin, essas podem ser utilizadas em dispositivos magnéticos baseados no fenômeno da magnetorresistência gigante. A espessura da camada de titânio entre as camadas de CoCrPt é diretamente responsável pelo acoplamento das camadas magnéticas (CoCrPt).

projeto visou determinar as curvas de magnetização e estudar o efeito da magnetorresistência de pseudo-válvulas de spin com diferentes espessuras de camada não magnética (Ti)(Fig. 1).

A partir de filmes finos de CoCrPt intercalados com Ti, utilizou-se de um difratômetro de raios-X para determinação da estrutura atômica e molecular dos cristais.


amostras foram estudadas por magnetômetro a amostra vibrante (VSM) de forma a encontrar a curva de magnetização dos filmes para campos magnéticos externos perpendiculares e paralelos ao plano das amostras. Os efeitos magnetoelétricos foram analizados a partir de dados obtidos do equipamento Physical Properties Measurement System (PPMS).

Resultados e Discussão

Por se tratarem de amostras pequenas (geometria de face aproximadamente quadrada de lado 5 nm), encontrou-se dificuldades na obtenção dos dados por difração de Raios X (Fig. 2).

O magnetômetro a amostra vibrante (VSM) vibra a amostra a determinada frequência conhecida, gerando, devido a magnetização da amostra, uma corrente alternada de mesma frequência nas bobinas captadoras, dessa forma, fora possível identificar a magnetização das amostras de diferentes espessuras de Ti para diferentes orientações e magnitudes de campos magnéticos aplicados.

equipamento Physical Measurement System (PPMS) mede a resistividade das amostras enquanto um campo magnético externo conhecido é aplicado sobre a amostra, sendo possível calcular o efeito da magneto resistência.

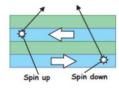


Figura 1. Funcionamento de uma pseudo-válvula de spin. As camadas em azul são as ferromagnéticas, em verde são camadas não ferromagnéticas.

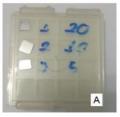


Figura 2. Amostras de pseudo-válvulas de spin produzidas na Universidade de Porto. A) Amostras de diferentes espessuras de Ti separadas para análise cristalográficas. Os números 5, 10 e 20 representam as respectivas espessuras das camadas de Ti em nanômetros.

Conclusões

Experimentos visando encontrar as curvas características magnetoestáticas e magnetóelétricas das amostras, possibilitando inferir a respeito do acoplamento das camadas magnéticas a medida que a expessura da camada de Ti varia, serão realizados com o auxílio de equipamentos dispostos laboratório. no

Testes ocorreram sem impedimentos relacionados aos equipamentos, permitindo a prática do aprendido na literatura e abrindo possibilidades para novos testes. Os experimentos relacionados a difração de raios-X não tiveram bons resultados devido a pequena área superficial das amostras

Agradecimentos

Essa trabalho teve suporte do Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq e da Fundação a Amparo à Pesquisa do Estado de São Paulo - FAPESP.

¹S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 14, 436 (1978).

²J. H. Judy, J. Magn. Magn. Mater. 287, 16 (2005).

³D. Navas, C. Nam, D. Velazquez, and C. A. Ross, Phys. Rev. B 81, 224439 (2010).