UNIVERSIDADE ESTADUAL DE CAMPINAS

APRENDIZAGEM SOBRE DIFERENTES TIPOS DE ATUADORES E SENSORES UTILIZADOS NA CONSTRUÇÃO E AUTOMAÇÃO DE DISPOSITIVOS ROBÓTICOS

ANA BEATRIZ DA COSTA AFONSO, LAURA VIANA HAEITMANN, MARCOS PABLO DO CARMO

Resumo

Este projeto desenvolvido e implementado no Núcleo de Informática Aplicada à Educação NIED/UNICAMP trata-se de uma Estufa Automatizada, constituída de sensores de temperatura e de umidade, monitorada via Smartphone. A Estufa automatizada executa as funções de ajustar a temperatura do ambiente e umidificar o solo de maneira autônoma. Um aplicativo, instalado em smartphone, faz o monitoramento das funções na estufa e indicando os valores de temperatura ambiente e as condições do solo (seco, normal ou úmido) em tempo real. Além dos sensores a estufa possui um ventilador e a bomba d'água que são atuadores que servem para o controle do solo e bombeamento de água. O principal dispositivo, utilizado como interface eletrônica programável neste projeto foi o controlador Arduino, responsável por interpretar os valores obtidos pelos sensores e a partir daí acionar os atuadores. Com a suspensão das atividades presenciais na UNICAMP o projeto foi interrompido na fase de concepção da Estufa automatizada sem a realização do monitoramento das variáveis de temperatura e de condições do solo via Smartphone. Entretanto, nesse período de suspensão, as atividades concentraram-se na pesquisa para o desenvolvimento de aplicativos em geral utilizados no controle de dispositivos robóticos. Para o desenvolvimento de aplicativos utilizamos a plataforma de criação App Inventor do sistema operacional Android, considerada ideal para estudantes por utilizar linguagem de blocos orientada a objetos. As atividades desenvolvidas nesta etapa foram de introdução, criação de layout de telas, botões e condicionais envolvendo situações com botões.

Introdução e enunciado do problema

Um dispositivo robótico é capaz de realizar trabalhos de maneira autônoma ou préprogramada. O projeto Estufa Automatizada monitorada via Smartphone consistiu da implementação de um dispositivo robótico caracterizado pela junção de diferentes tipos de atuadores e sensores que podem ser controlados por smartphone. Os atuadores e sensores trabalham seguindo uma sequência lógica de instruções que ficam armazenadas no controlador Arduino, considerado o cérebro da Estufa.

O protótipo da Estufa automatizada que desenvolvemos antes da pandemia é capaz de tomar decisões de maneira autônoma. A tomada de decisões no protótipo segue o algoritmo: 'Se a temperatura ultrapassa 28° C um ventilador é acionado para reduzi-la até 25° C. Se a umidade do solo fica baixa, uma bomba de irrigação é acionada para umedecer a terra'. Com a suspensão das atividades presenciais em virtude da pandemia, concentramos nossos estudos no desenvolvimento de aplicativos. O desafio passou a ser o desenvolvimento de aplicativos para smartphone adequado aos nossos celulares, pois o nosso intuito era testar nossas criações em nossos próprios aparelhos. Através de pesquisas e reuniões virtuais concluímos que a plataforma mais adequada para essa situação de trabalhos remotos era o "App Inventor for Android". Essa plataforma é programada em linguagem de blocos, a mesma linguagem que utilizamos para o protótipo da estufa. Com ela demos andamento aos nossos trabalhos e experimentamos não somente o uso e desenvolvimento de aplicativos, mas também vivenciamos na pratica um novo modo de aprendizagem sumarizado em reuniões e experiências virtuais. Podemos concluir que inauguramos o 'Novo Normal', ou seja, o novo mundo que se inaugura durante a pandemia e que deixa um legado para toda a eternidade.

Estufa automatizada

No período de janeiro a março trabalhamos na concepção da estufa e para isso, nós estudamos os dispositivos necessários para o funcionamento da Estufa automatizada. A Estufa automatizada é um projeto constituído por um controlador Arduino (Fig. 1), sensores (de Temperatura e de Umidade) e atuadores (Ventilador e 'Bomba d'água).

Dispositivos utilizados

1. Controlador Arduino: interpreta os valores obtidos pelos sensores e executa as funções dos atuadores de 'acionar ventilador' e 'acionar bomba de irrigação'. Através do programa implementado e que foi instalado no Arduino (desenvolvido em linguagem de blocos) é realizado o seguinte algoritmo: 'Se a temperatura ultrapassa 28° C um ventilador é acionado para reduzi-la até 25° C. Se a umidade do solo fica baixa, uma bomba de irrigação é acionada para umedecer a terra'.

Figura 1 - Placa Arduino

armazenadas na memória do dispositivo.

Placa Arduino

programável,

2. Sensores: são dispositivos que respondem a estímulos físicos (temperatura, umidade, dentre outros) e transmitem um impulso elétrico correspondente. Dentre os dispositivos que estudamos estão os sensores de Temperatura (Fig. 2a) e de Umidade (Fig. 2b) - responsáveis pela leitura desses valores.

Figura 2a - Sensor de Temperatura

é uma interface

executa

aue

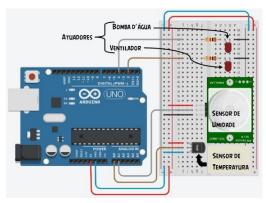
eletrônica instrucões.

Figura 2b - Sensor de Umidade

3. Atuadores: São dispositivos que realizam ou indicam uma ação. Os atuadores que estudamos são o ventilador e a bomba d'água - responsáveis pelas funções de ajustar a temperatura do ambiente e liberar água para umidificar o solo. Em nosso projeto utilizamos os led's para indicar o acionamento correspondente ao Ventilador e também à Bomba d'água.

Figura 3a - Ventilador

Figura 3b - Bomba d'água


Figura 3c - Led's

Funcionamento da Estufa Automatizada

O funcionamento da estufa acontece a partir da interpretação uma sequência lógica de instruções (programadas em linguagem de blocos) que são instaladas no controlador Arduino. A essa 'sequência lógica de instruções' dá-se o nome de programa. A Figura 4 corresponde ao programa de funcionamento da Estufa automatizada.

Figura 4 – Programa em linguagem de blocos para o funcionamento da Estufa automatizada.

Para testar o funcionamento do nosso projeto utilizamos o simulador TinkerCad, conforme ilustrado na Figura 5. Os atuadores ('Bomba d'água' e 'Ventilador') indicados na Figura 5 são representados por led's, que também são atuadores e cumprem a função de indicar os respectivos acionamentos desses dispositivos. A Figura 6 representa o circuito final para a Estufa automatizada.

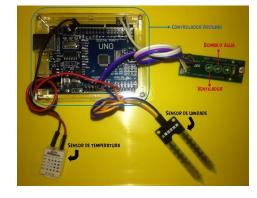


Figura 6 - Circuito final de teste para Estufa automatizada

Para viabilizar monitoramento da Estufa automatizada através de um smartphone é necessário estabelecer a comunicação entre o controlador da estufa e o smartphone. Para este caso, em que o controlador é um Arduino é necessário utilizar Módulo Bluetooth, Figura 7.

Figura 7 - Módulo Bluetooth

Módulo Bluetooth, Figura 7, possibilita transmitir e receber dados através de comunicação sem fio. Este módulo pode ser utilizado para criação de comunicação wireless para troca de informações entre dispositivos.

Desenvolvimento do Aplicativo

Para desenvolvimento do aplicativo utilizamos a plataforma de criação App Inventor do sistema operacional Android. As atividades desenvolvidas nesta etapa foram de introdução, criação de layout de telas, botões e condicionais envolvendo situações com botões. Obtivemos neste processo o resultado indicado na Figura 8, ou seja, ao clicar nos botões é possível modificar o estado de 'off' para 'on'.

Figura 8 – Simulando layout projetado no Smartphone

Resultados e discussão

A aprendizagem sobre diferentes tipos de atuadores e sensores utilizados na construção e automação de dispositivos robóticos' se efetivou na medida em que utilizamos dois sensores (umidade e temperatura) e três atuadores (ventilador, Bomba d'água e Led's) para controlar a nossa estufa. Nesse sentido obtivemos êxito. Entretanto, não construímos a estrutura de uma estufa para acomodar uma planta devido as limitações que o contexto atual da pandemia nos impôs.

Conclusões e considerações finais

Ao longo desta pesquisa, foi possível realizar variadas atividades que contribuíram ao raciocínio lógico e desenvolvimento pessoal, no sentido de estimular a busca por respostas e a formulação de hipóteses para propor soluções aos problemas que surgiram durante a pesquisa. Além disso, foi possível abordar uma série de conceitos científicos relacionados ao currículo do Ensino Médio. Com isso, posso dizer que experimentei a vivência de ser pesquisadora, cujo ímpeto pelo saber e pelo conhecimento é infindável.