

EFEITO DO ATRITO NOS GRÁFICOS DE SAÍDA DE DUAS VERSÕES DO EQUIPAMENTO IML RESI EM FUNÇÃO DA DENSIDADE DA MADEIRA

Matheus C. de Almeida^{1*}, Cinthya Bertoldo², Rafael G. M. Lorensani³.

¹matheuscardosodealmeida@gmail.com, ² cinthyab@unicamp.br; ³rafaelmansini@hotmail.com

RESUMO

A resistência à perfuração é uma técnica utilizada há muitos anos, dentre suas diversas aplicações, seu emprego mais frequente é na detecção de defeitos internos de árvores e na estimativa da densidade da madeira. O Laboratório de Ensaios Não Destrutivos (LabEND) da Faculdade de Engenharia Agrícola (FEAGRI) recentemente adquiriu um novo equipamento que mede a resistência à perfuração, porém o equipamento traz como saída, além dos dados de demanda de rotação (influenciados pelo atrito), dados de demanda de avanço, sem, neste caso, a influência do atrito, gerando diferenças significativas nos resultados. Sendo assim, a pesquisa teve como objetivo avaliar o efeito do atrito nos gráficos de resistência à perfuração em função da densidade da madeira, fazendo-se o uso do equipamento IML Resi PD Series 500. Através dos dados obtidos, foi possível construir modelos lineares e simples, que correlacionam os dados de densidade da madeira com os dados de demanda de rotação e de demanda de avanço fornecidos pelo equipamento. A partir dos modelos construídos, observou-se que os modelos de predição da densidade básica podem ser avaliados com relação à demanda de potência advinda da variação de rotação. No entanto, para os modelos de predição das densidades aparente saturada e a 12% de umidade, a utilização dos valores de demanda de avanço (sem a influência do atrito) melhoram a sua significância e permitem a obtenção de valores com menores erros de predição.

Palavras-chave: IML Resi PD Series 500; resistência à perfuração; densidade da madeira.

1 INTRODUÇÃO

A resistência à perfuração é uma técnica utilizada há muitos anos, dentre suas diversas aplicações, seu emprego mais frequente é na detecção de defeitos internos de árvores (NUTTO; BIECHELE, 2015) e na estimativa da densidade da madeira tanto de folhosas como de coníferas (LIMA et al., 2007).

O equipamento utilizado para perfuração, denominado penetrógrafo, direciona uma broca de aço de 3,0 mm de diâmetro para dentro da madeira com uma determinada velocidade de avanço, a

qual depende da espécie da madeira. Ao perfurar a madeira, a broca encontra diferentes intensidades de resistências, refletindo suas características físicas, mecânicas e anatômicas.

Conforme a broca perfura a madeira, os cavacos residuários do processo permanecem no canal de perfuração, causando atrito no eixo (RINN, 2012). Além disso, tensões internas no fuste podem fazer com que a madeira tente fechar o furo que está sendo perfurado e dessa maneira aperte a agulha, gerando atrito (NUTTO; BIECHELE, 2015). Este chamado atrito do eixo aumenta a resistência de perfuração, dificultando a identificação de defeitos internos na madeira (NUTTO; BIECHELE, 2015) e/ou afetando a estimativa de densidade da mesma.

O Laboratório de Ensaios Não Destrutivos (LabEND) da Faculdade de Engenharia Agrícola (FEAGRI) recentemente adquiriu um novo equipamento (Penetrógrafo, IML Resi PD Series 500, Alemanha) que além de apresentar a amplitude do torque, a qual traz informações da resistência à perfuração afetada pelo atrito, também fornece como saída um gráfico denominado "curva de avanço", que permite visualizar a demanda de potência para manter a rotação conforme a agulha perfura a madeira, sem, nesse caso, a interferência do atrito.

2 OBJETIVOS

O presente projeto de pesquisa teve como objetivo avaliar o efeito do atrito nos gráficos de resistência à perfuração em função da densidade da madeira, fazendo-se o uso do equipamento IML Resi PD Series 500.

3 MATERIAIS E MÉTODOS

Para a pesquisa foram selecionadas vinte e sete árvores de três diferentes espécies. Para tal, entrou-se em contato com o Departamento de Meio Ambiente da Universidade Estadual de Campinas (UNICAMP), o qual indicou algumas espécies disponíveis para o estudo, possibilitando que todos os ensaios fossem realizados no próprio campus da Universidade. Assim, foram selecionadas as espécies listadas abaixo, sendo válido ressaltar a importância da variação de densidade entre elas.

- *Delonix regia* (Flamboyant) baixa densidade
- Inga laurina (Ingá) média densidade
- Caesalpinia leiostachya (Pau-ferro)

As amostras utilizadas para a determinação da densidade das árvores foram extraídas com a utilização do Trado de Pressler (Figura 1) e, em seguida, acondicionadas em sacos plásticos identificados e selados e, acomodados em uma caixa com gelo, a fim de que a umidade fosse mantida.

Posteriormente, as árvores foram ensaiadas com o Penetrógrafo IML Resi PD Series 500 (Figura 2), o qual foi responsável por fornecer os gráficos de amplitude de torque e "curva de avanço", utilizados para o desenvolvimento da pesquisa.

Figura 1 - Amostra sendo retirada com utilização de Trado de Pressler

Figura 2 - Ensaio realizado utilizando penetrógrafo

No Laboratório de Ensaios Não Destrutivos, as amostras foram pesadas e tiveram suas dimensões medidas com o auxílio de balança de precisão e paquímetro digital, obtendo-se, respectivamente, as massas iniciais saturadas (m_{sat}) e os volumes saturados (V_{sat}). Em seguida as amostras passaram pelo processo de secagem em estufa até que a diferença entre duas leituras consecutivas de massa fosse inferior a 0,5% (ABNT NBR7190/1997) e, nessa condição, as amostras foram pesadas novamente, sendo obtidas as massas finais (m_{seca}).

Com os dados obtidos em laboratório, foi possível realizar o cálculo das densidades aparente saturada (ρ_{SAT}) e básica (ρ_B), utilizando-se, respectivamente as equações 1 e 2.

$$\rho_{SAT} = \frac{m_{sat}}{V_{sat}}$$
 Equação 1

$$\rho_B = \frac{m_{seca}}{v_{sat}}$$
 Equação 2

Posteriormente, a partir dos dados de densidade aparente saturada e utilizando o diagrama de Kollmann, foi possível obter a densidade aparente a 12% ($\rho_{12\%}$).

Após serem obtidos, os dados de densidade aparente saturada (ρ_{SAT}), densidade básica (ρ_B), densidade aparente a 12% ($\rho_{12\%}$), amplitude de torque e amplitude de avanço, foram planilhados e tratados utilizando o software Microsoft Excel[®]. Em seguida, os dados foram avaliados utilizando-se software estatístico.

4 RESULTADOS

A partir dos dados coletados e, por meio do uso de software estatístico, foi possível construir modelos lineares e simples que correlacionam os dados de densidade da madeira com os dados de

demanda de rotação (com efeito do atrito) e demanda de avanço (sem efeito do atrito) fornecidos pelo equipamento, possibilitando avaliar a interferência do atrito na predição dos valores de densidade.

4.1 Regressões lineares

Os resultados obtidos através da análise de regressão linear são apresentados na Tabela 1.

Tabela 1 - Regressão linear da densidade básica, aparente saturada e aparente a 12% com relação aos atributos de demanda de rotação e avanço do penetrógrafo.

Modelo	P-valor	R	$R^2(\%)$	erro
$\rho_{SAT} = 0.8302 + 0.0056 * Rotação$	0,0015	0,58	33,6	0,066
$\rho_{SAT} = 0.8229 + 0.0065 * Avanço$	0,0000	0,74	55,2	0,054
$ ho_{ m B} = 0.1312 + 0.0124 * { m Rotação}$	0,0000	0,80	65,5	0,077
$\rho_{\rm B} = 0.3033 + 0.0091 * Avanço$	0,0003	0,64	41,9	0,100
$ ho_{12\%} = 0.8583 + 0.0051 * Rotação$	0,0026	0,55	31,0	0,065
$\rho_{12\%} = 0.8512 + 0.0060 * Avanço$	0,0000	0,71	51,1	0,054

 $\rho_B = Densidade \ b\'{a}sica \ [g/cm^3]; \quad \rho_{SAT} = Densidade \ saturada \ [g/cm^3]; \quad \rho_{12\%} = Densidade \ aparente \ a \ 12\% \ [g/cm^3].$

A partir dos resultados obtidos, foi possível observar que, exceto para os modelos de predição da densidade básica, todos os modelos apresentam melhoras quando à significância do modelo, coeficiente de correlação, coeficiente de determinação e diminuição do erro de estimativa, quando correlacionados aos dados provenientes da "curva de avanço", ou seja, o avanço (obtido sem efeito do atrito) explica com maior precisão as densidades aparentes (saturada e a 12% de umidade), enquanto que a rotação (obtido com efeito do atrito) explica com melhor precisão a densidade básica.

4.2 Regressões simples

Nem sempre a regressão linear é a melhor forma de representar uma distribuição de pontos amostrais, por isso foram avaliados modelos alternativos para representar a distribuição dos dados. Os resultados obtidos através da análise de regressão simples são apresentados na Tabela 2.

Tabela 2 - Regressão simples da densidade básica, aparente saturada e aparente a 12% com relação aos atributos de demanda de rotação e avanço do penetrógrafo.

Modelo	P-valor	R	$R^2(\%)$	erro
$\rho_{SAT} = 1/(0.7329 + 8.4933/Rotação)$	0,0002	0,64	42,1	0,063
$\rho_{SAT} = \exp(0.2827 - 7.6873/\text{Avanço})$	0,0000	-0,85	72,6	0,043
$\rho_{\rm B} = {\rm sqrt}(-0.2035 + 0.0154 * {\rm Rotação})$	0,0000	0,81	66,3	0,093
$\rho_{\rm B} = 1/(0.7068 + 31.7161/{\rm Avanço})$	0,0000	0,75	56,8	0,252
$\rho_{12\%} = 1/(0.7469 + 7.6016/\text{Rotação})$	0,0006	0,61	38,1	0,061
$\rho_{12\%} = \exp(0.2759 - 7.1433/\text{Avanço})$	0,0000	-0,83	69,1	0,043

 $\rho_B = Densidade \ b\'{a}sica \ [g/cm3]; \qquad \rho_{SAT} = Densidade \ saturada \ [g/cm3]; \qquad \rho_{12\%} = Densidade \ aparente \ [g/cm3].$

Todos os modelos apresentaram melhoras na significância estatística, no coeficiente de correlação, coeficiente de determinação e diminuição do erro de estimativa ao utilizar modelos alternativos para as regressões entre os pontos amostrais.

Da mesma forma como apresentado para as regressões lineares, quando utilizadas as regressões simples, a densidade básica foi melhor explicada pela demanda de rotação ($R^2 = 66,3\%$), enquanto as densidades aparentes saturada ($R^2 = 72,6\%$) e na umidade de 12% ($R^2 = 69,1\%$) foram melhor explicadas pela demanda média de avanço.

5 CONCLUSÕES

Com o desenvolvimento deste projeto de pesquisa, foi possível concluir que os modelos de predição da densidade básica da madeira podem ser avaliados com relação à demanda de potência advinda da variação de rotação do penetrógrafo.

Para os modelos de predição da densidade aparente saturada e aparente a 12% da madeira a utilização dos valores de demanda de avanço, valores esses que não sofrem influência do atrito, melhoram a sua significância e permitem a obtenção de valores com menores erros de predição.

6 AGRADECIMENTOS

Agradeço ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) pela bolsa de estudos, à orientadora Prof.ª Dr.ª Cinthya Bertoldo Pedroso pela oportunidade e confiança depositadas em mim, ao coorientador Rafael Gustavo Mansini Lorensani pelo apoio prestado ao longo do desenvolvimento do projeto, ao Departamento de Meio Ambiente do Campus por indicar e autorizar a utilização das árvores na pesquisa e, à minha família, pois isto foi possível graças ao esforço e dedicação que sempre tiveram.

7 REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7190**: Projetos de estrutura de madeira. Rio de Janeiro, 1997. 107p.

LIMA, J. T. et al. Uso do resistógrafo para estimar a densidade básica e a resistência à perfuração da madeira de Eucalyptus Use of the resistograph for Eucalyptus wood basic density and perforation resistance estimative. **Scientia Forestalis**, p. 85–93, 2007.

NUTTO, L.; BIECHELE, T. Drilling resistance measurement and the effect of shaft friction — using feed force information for improving decay identification on hard tropical wood. In: **Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium,** Rio de Janeiro, Brazil, pp 154–161, 2015.

RINN, F. Basics of micro-resistance drilling for timber inspection. **Holztechnologie**, v. 53, p. 24–29, 2012.