Selective permeability of graphenelyne membrane: performance in multifunctional gas separation

Jessé L. Paulino¹, Daiane D. Borges¹,², Douglas S. Galvão¹,²

1. Applied Physics Department, University of Campinas, Campinas, Brazil.
2. Center of Computational Engineering and Science – CEPID, UNICAMP, Campinas-BR.

INTRODUCTION

Biphenylene carbon (BPC), also called graphenylene, is a hypothetical porous two-dimensional (planar) allotrope carbon\[^1\] that may be obtained from selective dehydrogenation of porous graphene\[^2\]. BPC natural porosity can be exploited to create selective permeable membranes, which could lead to promising technological applications, such as gas separation. In this work, we have investigated the BPC permeability to H_2, CH_4, N_2, and CO_2 gases. Also, we have evaluated the BPC selectivity for CO_2/CH\(_4\), CH_4/N\(_2\), CO_2/N\(_2\) and H_2/CO\(_2\) gas mixtures.

Figure 1. BPC is a porous carbon allotrope and has a thickness of a single atom. The BPC pores are regular decagons with a diameter of 3.2 Å.

METHODOLOGY

In this work, fully atomistic MD simulations were performed to predict the gas adsorption and permeability of BPC to single H_2, CH_4, N_2, and CO_2 components. The simulation system consists of a single BPC sheet into contact with a gas reservoir under different pressure values (see Figure 2). The separation mechanism of the binary CO_2/CH\(_4\), CH_4/N\(_2\), CO_2/N\(_2\) and H_2/CO\(_2\) gas mixtures was also evaluated.

Figure 2. Simulation system.

RESULTS AND DISCUSSION

Figure 3. Snapshots of a X/Y gas mixture system with a composition of 50% X:50% Y in mols: on the left the initial configuration at density ρ; on the right, the system in thermodynamic equilibrium at a temperature of 300 K.

Figure 4. (a) BPC permeability (i.e. $P_i = N_{\text{out}}^i/N_{\text{in}}^i$) to H_2, CO_2, CH_4, and N_2 single components; (b) selectivity (i.e. $S_{X/Y} = N_{\text{out}}^X/N_{\text{out}}^Y$) at different initial densities and for each of the CH_4/N\(_2\), CO_2/N\(_2\), H_2/CO\(_2\) mixtures. BPC exhibit high selective permeability for binary CH_4/N\(_2\), CO_2/N\(_2\) and H_2/CO\(_2\) gas mixtures depending on the reservoir pressure.

Figure 5. Density profile for each of the CO_2/CH\(_4\), N_2/CH\(_4\), CO_2/N\(_2\), and H_2/CO\(_2\) gas mixtures.

CONCLUSIONS

Our results show that BPC is highly selective for H_2, CO_2, and CH_4 with good potential to work as a molecular sieve for the purification of these gases.

REFERENCES