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1 INTRODUCTION

Researches with tomatoes images are frequently related to maturity and fruit size estimation, be-
cause it helps to plan the harvest and to project sales. For example, Sari et al. (2016) and Sari &
Adinugroho (2017) used different approaches to classify the maturity of segregated tomatoes. This
means that they used images containing only tomatoes in a simple background. Other researches
that worked with isolated tomatoes include developing algorithms to estimate their volume and
mass (Nyalala et al., 2019), detecting external defects (da Costa et al., 2020) and detecting fruits,
flowers and the maturity gradient (de Luna et al., 2019).

In a real world application, it is necessary to monitor tomatoes in crop conditions. Deep learning
techniques such as convolutional neural networks (CNN) have shown promising results to identify
objects in images (LeCun et al., 2015). For example, Liu et al. (2019) achieved an F1-Score of
92.15% while detecting mature tomatoes in these condition. Meantime, the identification of green
fruits in the background of leaves could be a challenge: Habaragamuwa et al. (2018), working with
green strawberries identification, reached an average precision of approximately 10 p.p. lower when
compared with results of mature strawberries.

In this research, we propose a deep learning model that identifies images which contain tomato
fruits. In addition to the challenge previously mentioned, another obstacle is that the CNN needs a
large amount of data to train. Transfer learning techniques can be used to solve this problem, which
means to adapt the knowledge of pre-trained models to a new problem (Pan & Yang, 2010). Addi-
tionally, data augmentation techniques have proven to increase significantly the model performance
in agriculture problems (Bargoti & Underwood, 2017).

2 MATERIALS AND METHODOLOGY

2.1 DATASET

All images were collected at the producer Projeto Mais1, located in Campinas, SP, Brazil. We
took the photos with a Samsung Galaxy J8 camera (4 608 × 3 456 pixels resolution). Due to the
complexity of CNNs, images with high resolution require high computational processing. So it is
common to split images into smaller patches to train models. Folego et al. (2016) indicate that using
patches is beneficial to avoid information loss and to better use the details of images.

Using this method, we split each image into patches with sizes similar to the input of most neural
networks (i.e., 224 × 224 pixels). One original image generates 225 patches with resolution of
307× 230 pixels. All patches have the same size and there is no overlap between them.

We split 52 images in high resolution into 11 700 patches. Then these patches were labelled in
two categories: “with tomato” and “without tomato”. All images with any fraction (the size does
not matter) of a tomato were considered “with tomato” samples. Images that did not have any
tomatoes parts were classified as “without tomato” samples. Some patches were removed because
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Table 1: Images distribution and their patches division.

Set Images Patches With tomato Without tomato
Training 37 8 361 2 739 5 622

Validation 5 1 121 336 7 85
Test 10 2 115 584 1 531

it was impossible to distinguish if we were observing a leaf or a green tomato. In these cases, the
challenge of classifying green tomatoes in the middle of green leaves stands out.

Our dataset was divided randomly trying to follow the proportion: 70% of patches to train the model;
10% to validation; 20% to test (Table 1). During this process, we assured that all patches of the same
original image belonged to the same set (training, validation or test).

2.2 TRAINING AND VALIDATION

As parameter of analysis, we used the same metric as Habaragamuwa et al. (2018), Bargoti &
Underwood (2017), Dias et al. (2018) and Liu et al. (2019): F1-Score. Also, to improve the study
of the model performance, we generated the receiver operating characteristic (ROC) curve and we
calculated the area under the curve (AUC).

As shown in the literature, transfer learning is a technique that may improve or not results, depending
on the dataset. Thus first we validated the use of three training methods: from scratch, with fine-
tuning, and with fine-tuning just in the last layer. Due to the better results on previous experiments
and other similar problems (Rahnemoonfar & Sheppard, 2017; Habaragamuwa et al., 2018), we used
in these first experiments the neural network ResNet152 pre-trained in the ImageNet (Russakovsky
et al., 2015) dataset.

With the best precedent method we validated techniques of data augmentation, which increased
results of previous works (Bargoti & Underwood, 2017; Perez & Wang, 2017). The first arrangement
is flipping images in vertical and horizontal, both with 50% probability of being flipped. The second
arrangement is a combination of the first one with transformations in bright, contrast, saturation and
hue. The third is the same as the second but with random rotation. Finally, we compared resizing
patches directly to the input size of ResNet152 or applying a random crop in each patch.

Then, we trained the following models: AlexNet (Krizhevsky, 2014), ResNet18, ResNet50 and
ResNet152 (He et al., 2016), VGG16 and VGG19 (Simonyan & Zisserman, 2015); Inception
V3 (Szegedy et al., 2016), SqueezeNet V1.0 and SqueezeNet V1.1 (Iandola et al., 2016). And
to interpret the classification produced by our neural networks, we used the class activation mapping
(CAM) visualization algorithm (Zhou et al., 2016). Lastly, to solve the confusion problem of a green
tomato fruit in the green background, we followed Habaragamuwa et al. (2018) recommendation to
use a CNN as a feature extractor and then train a support vector machine (SVM) classifier (Cortes
& Vapnik, 1995) with these features.

3 RESULTS AND DISCUSSION

The results of different learning methods are shown in the Table 2. As expected in cases that the
amount of data are limited, fine-tuning the network shows better results Tajbakhsh et al. (2016).
In our problem, fine-tuning all the network is the best solution. In Table 3 we present the results
of different data augmentation techniques. Then, we also validate applying a random crop in our
patches instead of resizing it. The results are in Table 4.

Based on the last experiments, we defined that our models should be trained fine-tuning all the
network, flipping images in vertical and horizontal, applying transformations in brightness, contrast,
saturation and hue, and using random crop. The results of each neural network are presented in the
Table 5. They are compatible with other papers in similar problems (Rahnemoonfar & Sheppard,
2017; Habaragamuwa et al., 2018), where ResNet152 shows the best F1-Score.

1https://www.casabugre.com.br/empresa/o-projeto-mais
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Table 2: Results of ResNet152 with different learning methods.

Learning Method F1-Score
From scratch 0.5911
With fine-tuning just in the last layer 0.7742
With fine-tuning in all the network 0.8947

Table 3: ResNet152 training results with different data augmentation.

Data augmentation F1-Score
Without data augmentation 0.8847
Flipping in vertical and horizontal 0.8935
Flipping and transformations in bright, contrast, saturation and hue 0.8947
Flipping, transformations and rotations 0.8934

The best F1-Scores were from ResNet and VGG families. In opposition, the Inception V3 is akin
to these neural networks (lots of layers and parameters) and has demonstrated the worst results in
recall and precision. A deeper analysis is necessary to understand the reasons for this results.

We have as example of a ResNet152 false negative case the Figure 1, that shows the activation
mapping of our CNN. It is considered that red pixels means higher activations. In this example, even
the model having activations in the region of the tomato, the classification was “without tomato”.
The same was repeated in others false negatives cases.

Figure 1: Class mapping activation example for tomato (in the middle) and without tomato (in the
right).

With weights updated previously, we used the ResNet152 to extract features and train the SVM
classifier. Using the RBF kernel with parameters C = 1 and γ = 1/nfeatures, the F1-Score was
0.9527. Using the linear kernel with parameters C = 1, the F1-Score was 0.9454.

The classification results of SVM models were higher to those of neural networks (Table 6). The
error of the best SVM model in the test set was 30 images with tomato and 25 without tomato.
From the 30 tomato images, 23 of them were green tomatoes with overlapping green leaves. This
emphasizes the difficulty of classification in this challenging scenario.

4 CONCLUSION

In this research we developed an automated system based in deep learning techniques to identify
images that contains tomato fruits. We validated the use of different CNNs, as well as techniques of
data augmentation and transfer learning.

During the construction of the dataset, we observed the difficulty of annotating images with green
tomatoes in the middle of green leaves. This recognition is an obstacle even to a human, so it was
expected that the model classification in these cases would result in more errors.

The best model has an F1-Score of 0.9527, using the ResNet152 (with weights updated to this
problem) to extract features and an SVM to classify them. This result shows that our method has
better performance to classify images when compared to previous works in similar problems.
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Table 4: ResNet152 training results with two specific data augmentation techniques.

Data augmentation F1-Score AUC
Resizing the patch to the same model input size 0.8808 0.9854
Random cropping the patch 0.8947 0.9243

Table 5: Results of different neural networks.
Neural Network Recall Precision F1-Score AUC Inference (ms)
AlexNet 0.7722 0.9415 0.8485 0.9421 7.08
Inception V3 0.7587 0.8878 0.8181 0.9734 18.25
ResNet18 0.8185 0.9336 0.8723 0.9786 8.11
ResNet50 0.8527 0.9222 0.8861 0.9187 14.69
ResNet152 0.8801 0.9097 0.8947 0.9243 31.18
SqueezeNet V1.0 0.7962 0.9012 0.8455 0.9625 6.64
SqueezeNet V1.1 0.8253 0.8976 0.8599 0.9671 6.21
VGG16 0.8425 0.9283 0.8883 0.9050 23.90
VGG19 0.8596 0.9211 0.8893 0.9138 28.07

Table 6: Results using the SVM classifier with RBF and linear kernels.

SVM Precision Recall F1-Score
RBF kernel 0.9568 0.9486 0.9527
Linear kernel 0.9422 0.9486 0.9454

Considering the publication of all code used in this research, the results can be reproduced and the
models used in subsequent researches. To future works, it is necessary to build a larger dataset
to reach even better results. The model developed in this research can be used as ground to solve
problems of localization and segmentation.
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