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The project had the goal to study the electromagnetic wave propagation in photonic crystal (PhC),
which is a system with modulated periodicity in the dielectric constant. As the electronic case, the
PhC presents a photonic band diagram that we can determine the light propagation inside the
crystal. Due to the existence of photonic band gap also there is the prohibition of wave propagation
of certain frequencies. Inserting defects in the periodicity, it’s possible to create waveguides and
optical cavities. A theoretical study was made to understand the PhC’s accompanied by numerical
simulations using Comsol® and by experimental investigation. To this, it was measured optical
transmission to characterize single and coupled cavities in Silicon PhC.

INTRODUCTION

Currently, photonics [1] is arising as an alternative
method of information transport. In this way, it is inter-
esting the storage and the light transport in microscopic
devices through optical cavities. These cavities confine
light in a spatial region contemning material or not, one
example is the photonic crystal [2–4]. These systems
have a periodic dielectric constant and a photonic band
diagram which represents the light dispersion in the ma-
terial. In the PhC, the cavity is created by an inter-
ference process in the unit cells of propagating waves.
The vantages are nanocavities with a high-quality factor
[5, 6] that can be coupled [7] and can be made of Silicon,
therefore produced on a large scale [8–10]. Specifically,
in this project we worked with a PhC proposed by Noda
et al. [5], figure 1.

FIG. 1. PhC is made of a Silicon slab with periodical air holes
responsible for the dielectric constant difference. There is a
waveguide due to a linear defect in the middle and there is a
cavity due to a lattice parameter variance in the center. The
values are a1=410nm, a2=420nm, a′2=(a1+a2)/2, d around
2a′2 and r around 0.26a2. Picture adapted of [5].

According to our progress in this work, we’ll under-
stand why these defects create a cavity. At last, we’ll see
how to work the coupling between two cavities, i.e., when
one cavity electromagnetically interferes with the other.

PHOTONIC CRYSTAL

One-Dimensional photonic crystal

Working with Maxwell’s equations in a material with-
out current or free charges, it is obtained an eigenvalue
equation to the magnetic field (1), called Master Equa-
tion [11] (it is possible to find the electric field in the
same way).

~∇×( 1
ε(~r)

(~∇× ~H))=(ωc )
2 ~H(~r). (1)

To understand the equation we use some concepts from
solid-state. First, the periodic dielectric constant ε(~r) is

localized by a lattice vector ~R, which is a linear combi-
nation of primitive vectors (minimal vectors that allow
describing the whole crystal). Besides that, we can con-
struct a parallel space to the real space through a Fourier
Transform of the magnetic field function. This step re-
sults in a wave vector space described by the reciprocal
vector ~G, with the condition ~R · ~G = 2πδij . To solve the
equation (1), we apply the Bloch Theorem that allows the
expansion of the magnetic field in a linear combination
of plane waves. In a one-dimensional photonic crystal,
i.e., a structure with periodicity in one direction and ho-
mogeneous in the others, writing the magnetic field in
terms of plane waves with the coefficients as a periodic
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function is obtained a dispersion equation to the light in

the PhC given by ω
c = |~k|√

ε
. According to this equation,

the light frequency depends on the wave vector and the
dielectric constant. So, if the structure has is just one
dielectric constant, the band diagram will be continuous.
However, if the structure has two dielectric constants, it
will arise a discontinuity in the edges (where the dielec-
tric change equals ∆ε). Therefore will be two frequencies

for the same ~k to satisfy the dispersion equation creating
a photonic band gap. One example of a one-dimensional
photonic crystal is a multilayer film, where the band di-
agram is shown in figure 2 for different materials. It’s
important to note that the band repeats each ~G, con-
sequently, all band diagrams are equal n times of the
first band, called First Brillouin Zone (BZ). In more di-
mensions, this zone is reduced by translational and rota-
tional symmetries, forming the Irreducible Brillouin Zone
(IBZ).

FIG. 2. Left: Band diagram of a system contemning
just GaAs. Center: Band diagram of a multilayer film of
GaAs/GaAlAs, as the ∆ε is small, the discontinuity is small.
Right: Band diagram of a multilayer film of GaAs/Air, here
the ∆ε is bigger, consequently the gap is bigger too. The
normalized graphs are frequency per ~G. The figure was taken
from [11].

Two-Dimensional Photonic Crystal

Now, we start to understand the Noda crystal doing
a simple two-dimensional PhC unit cell. All studies did
here were made in the Comsol® , a finite element method
software. The structure has periodicity in two directions,
meanwhile is finite in the third direction. The hexagonal
unit cell is shown in figure 3(a).

As the one-dimensional PhC, there is a band dia-
gram, but in more dimension, the primitives vector form
a polygon in the reciprocal space. Using arguments
of translational and rotational symmetries it is possi-
ble to describe the light behavior in the crystal sur-
rounding the IBZ. In the hexagonal case, spatial and

reciprocal vectors are ~Rn = n1(a, 0) + n2

(
a
2 ,

a
√
3

2

)
and

~Gm = m1

(
2π
a ,
−2π√
3a

)
+ m2

(
0, 4π√

3a

)
. The BZ points is

Γ = (0, 0), M =
(
π
a , 0
)

and K =
(
π
a ,

π√
3a

)
.

The band diagram of the cell is shown in figure 3(b).
Simulating half of the geometry in ẑ is possible perform-
ing Perfect Electric Conductor (PEC) or Perfect Mag-
netic Conductor (PMC) on the surface, separating the
even and odd modes in the same direction. Even modes
maintain the signal of the fields in the two halves of ge-
ometry, and the signals are inverted in odd modes. We
note that just in z-odd modes there is a photonic band
gap to low frequencies, so we will use always these modes
in ẑ. The light line is a limiter that can be interpreted
as a limit to modes coupling in the crystal, outside the
light line the modes are in the air box. Some examples
of modes are represented in 3(c). To z-even modes are
used the Ez component because Ex and Ey in the middle
of the cell is negligible, already to z-odd modes are used
the Ey component because this is maximum meanwhile
Ez is negligible.

Following the idea to construct a Noda crystal, we sim-
ulated a waveguide made of the same unit cell used be-
fore, figure 4(a). The waveguide appears due to a linear
defect in the middle. As the defect is minimum in the
structure, doesn’t cause a change in the band diagram
but allows guided modes inside the photonic band gap.
These modes are trapped because of their evanescent as-
pect. The band diagram is shown in figure 4(b), it is
noted that the frequency modes are approximately in-
side the band gap of the hexagonal unit cell diagram.
After that, we changed the lattice parameter value fix-
ing kx = π/a, figure 4(b), the mode frequencies decrease
according to the lattice increase. Using this fact, decreas-
ing the lattice parameter slowly it’s possible to trap the
mode in a small model volume as a perturbation, smaller
than a linear defect, creating a cavity.

The cavity geometry is similar to figure 1, the val-
ues are a1=410nm, a′2 = 420 nm, a2 = 430 nm and
r = 117 nm. Besides that, it was found high order mode,
this mode have more electric field nodes and lower qual-
ity factor, i.e, it’s less trapped allowing radiation losses.
One example is shown in figure 6(b), we simulated 1/4 of
the simple cavity crystal using PMC on the boundaries
surfaces and we found the even mode (maximum value
to Ey component).

OPTICAL CAVITY

The optical cavities allow the electromagnetic field
density storage in the device. One example is the Fabry-
Perot cavity, figure 5.

If the fields in Maxwell’s equations are expanded in
plane wave base, using the orthogonality relations and
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FIG. 3. (a) A hexagonal unit cell (highlighted in blue) with periodicity in the xy plane. The parameters are the lattice vector
with a = 410 nm, the radius with r = 117 nm and the thickness with t = 250 nm. Also, there is an air block above the cell
of 3 µm.(b) Band diagram of the hexagonal unit cell. The size markers are proportional to the quality factor and the electric
energy density in the cell. The definition of quality factor is the mode frequency per loss, this concept will be explored more
later.(c) Top line: Two z-even modes are shown, the color edge of the cell is used to represent the mode inside the band diagram,
in M and K point respectively. Bottom line: Two z-odd modes are shown, the color edge of the cell is used to represent the
mode inside the band diagram, in M and K point respectively.
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FIG. 4. (a) A waveguide with periodicity in the x direction. The BZ are highlighted in blue. (b) Left: Photonic band diagram
of the waveguide. Right: Fixing the wave vector in π/a, the graph shows the mode behavior according to the lattice parameter
value change.(c) Two waveguide modes are shown, one y-even and one y-odd, is represented Ey component and the color edge
of the waveguide is used to represent the mode inside the band diagram.

expanding the fields also to optical modes, i.e., tempo-
ral and spatial modes ai(t)εi(~r), we obtain the temporal
evolution of optical mode. Defining a variable detuning
∆ = ωl − ωc and changing the referential of the system
to the laser frequency, we have:

ȧ(t) = i∆a(t)− κe + κi
2

a(t) +
√
κeαin. (2)

where a(t) is the temporal mode, κ = κe + κi is the
total loss given by κ

2 = ωc
εi
ε and αin is the optical input.

There are two losses types, one is the external arose of
light coupling with the crystal and the other is an internal
arose of intrinsic losses like scattering and absorption.
Also, we put a phenomenological term associate with a
loss of cavity with a laser excitation wave of frequency
ωl.
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FIG. 5. Fabry-Perot cavity with a frequency mode of ωc. The
cavity is excited by an external frequency ωl. The indicated
losses are the external loss κe and the internal loss κi.

Using the input-output relations, αout−αin = −√κea,
in the stationary regime (ȧ(t) = 0), the transmission sig-
nal is the square of reflection amplitude module:

|R|2 = |αout
αin
|2 =

(κe − κi)2 + 4∆2

(κe + κi)2 + 4∆2
=

(2κe − κ)2 + 4∆2

(κ)2 + 4∆2
.

(3)
the equation has the Lorentzian form.

To study modal coupling, we consider two nearby
modes with weak coupling, the evolution of temporal
mode is written as:

da1
dt

= iω1a1+ iκ12a2 and
da2
dt

= iω2a2+ iκ21a1. (4)

where κij is the coupling rate of mode j in mode i. By
energy conservation, we obtain that κ12 = κ∗21 = κ. If we
expand the mode as ai ∝ cie

iωt, the coupling frequency
is given by:

ω =
ω1 + ω2

2
±

√(
ω1 − ω2

2

)2

+ |κ|2 =
ω1 + ω2

2
± Ω0.

(5)
The coupling splits the frequency in two modes with

difference equal 2Ω0, a symmetric and an anti-symmetric
mode. One example is shown in figure 6(d), we simu-
lated 1/4 of the coupled cavity crystal using PMC on the
boundaries surfaces and we found the even mode (max-
imum value to Ey component). We made the coupled
crystal changing the lattice parameter value twice in the
x direction, creating two perturbation regions.

FABRICATION AND OPTICAL
CHARACTERIZATION

The microfabrication process used was corrosion by hy-
drofluoric acid. The steps are described in the following:
in a Si wafer, there is a superior layer with the devices,
where the photonic crystals are made of Si and the other
regions of SiO2. Over the wafer is deposited an ultra-
violet sensitive resist, which is hydrofluoric acid resist.

Using photon lithography is sensitized the interest re-
gion and made a revelation that takes off the resist of
this region and maintains the other regions. After this
step, the sample is put in the acid that corrodes just the
SiO2 in the layer with the devices and the PhC stays
intact. The figure 6 show the two sample measured in
the project, in figure 6(a) is the single cavity PhC and in
figure 6(c) is the coupled cavity PhC.

a)

c)

b)

d)

FIG. 6. (a) Photonic crystal with single cavity.(b) Optical
mode simulated to single cavity.(c) Photonic crystal with cou-
pling cavities, around the crystal there is a mechanical shield
that supports the mechanical modes, but does not interfere
in the optical mode.(d) Optical mode simulated to coupled
cavity.

To characterization was fabricated tapers that are re-
sponsible by the light coupling in the cavity putting over
the modal volume. The tapers are formed by a process of
pre-derection and traction of conventional optical fibers.
The experimental setup is illustrated in figure 7(a). The
tuned laser is used to sweep the wavelength meanwhile
the transmission of the cavity is collect by DAQ.The op-
tical evanescent coupling between the taper and the opti-
cal cavity allows that the transmission spectrum be mea-
sured. As not it is possible read the wavelength direct
from laser, we use MZ and HCN as assistant to calibrate
the wavelength correctly.

The equation (3) was deduced to one port coupling, in
the case of PhC we have two port coupling between the
taper and the cavity. The new equation is:

|R|2 =
(κ− κe)2 + 4∆2

(κ)2 + 4∆2
. (6)

A important parameter is the quality factor which indi-
cates the light storage without dissipation in the cavity.
The definition of total and intrinsic quality factor are
Q = ωc/κ and Q = ωc/κi respectively. In the transmis-
sion spectrum ωc is the minimum value of resonance and
κ is the half-height of Lorentzian. The measured spec-
trum of the crystal 6(a) is shown in figure ??(b), the total
loss is κ = (923±1) MHz, the external loss is κe = (76±1)
MHz, the total quality factor is Q = (211± 1) thousand
and the intrinsic quality factor is Qi = (231 ± 1) thou-
sand. The values are the according to literature [8]. To
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FIG. 7. a) The experimental setup is a tuned laser coupled in the cavity by the taper. The low frequency photodetectors
(PD) collect the transmitted light that bring the optical information ((b)) and ((c)) from the cavity. MZ: Mach-Zehnder
interferometer, MOD: Phase modulator, DAQ: digital analog converter, HCN: Hydrogen Cyanide.

the measurements of the crystal of the figure 6(b) we
didn’t find the split in the optical mode. A possible ex-
planation is that the modes may be shifted from each
other in the spectrum due to inaccuracy in the center
frequency, the difference between the modal frequencies
is approximately 1.96 nm which is equivalent to an inac-
curacy of 0.13% in the center frequency or the modes do
not coupled. In figure 7(c) are showed the two modes:
to 7(c)(I) the total loss is κ = (1.5 ± 0.1)109 Hz, the
external loss κe = (532 ± 0.2)109 Hz, the total quality
factor is Q = (122.8 ± 0.1) thousand and the intrinsic
quality factor is Q = (186.2 ± 0.1) thousand; to 7(c)(II)
the total loss is κ = (1.9 ± 0.1)109 Hz, the external
loss κe = (1.1 ± 0.1)109 Hz, the total quality factor is
Q = (99.9 ± 0.1) thousand and the intrinsic quality fac-
tor is Q = (236.2± 0.1) thousand

CONCLUSION

In this work was studied system with modulated peri-
odicity in the dielectric constant called photonic crystal.
From solid state analogy, we studied the PhC constitu-
tion and the light propagation inside, creating waveg-
uides and cavities. Also, we introduced the coupling cav-
ities concept. All steps were accomplish with simulation
in Comsol® . Experimentally it was measured optical
transmission of single and coupled cavities in PhC, ob-
taining high quality factors. Unfortunately, not was pos-
sible to observe the split in the coupled cavities.
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