

REMOÇÃO DA CEFAZOLINA SÓDICA VIA ADSORÇÃO EM LEITO FIXO DE ARGILA

Palavras-Chave: Adsorção, cefazolina, argila

Isabela Cardoso Ferreira, Marcela Pires Spaolonzi, Meuris Gurgel Carlos da Silva

Universidade Estadual de Campinas, Faculdade de Engenharia Química, Av. Albert Einstein, 500,

13083-852, Campinas, Brasil

INTRODUÇÃO E OBJETIVOS

Os antibióticos β - lactâmicos constituem a parcela de antibióticos mais utilizados em diversos países, correspondendo a aproximadamente 50-70% de seu uso total (KUMMERER, 2009). Dentre eles, as cefalosporinas são medicamentos de vasta importância terapêutica, sendo a cefazolina sódica uma das principais cefalosporinas de primeira geração (PEDROSO, 2013). Assim como outros antibióticos, a cefazolina não é totalmente metabolizada no corpo, de modo que o medicamento e seus metabólitos são excretados pela urina e fezes e destinados a estações de tratamento, onde não são totalmente removidos devido a ineficiência das tecnologias convencionais. Dessa forma, estes fármacos, considerados contaminantes emergentes, têm como destino final corpos hídricos e a água que retorna para o consumo humano, trazendo prejuízos ao meio ambiente e à saúde humana (KUMMERER, 2009; ZHANG *et al.*, 2018; PESCARA, 2014).

Portanto, é necessário o estudo de novos métodos que sejam eficazes na remoção da cefazolina de matrizes aquosas. Dentre eles, a adsorção se mostra promissora, visto que apresenta vantagens como baixo custo de processo, alta eficiência e possibilidade de regeneração e reuso do material adsorvente (SOPHIA; LIMA, 2018). Nesse sentido, alguns adsorventes alternativos têm sido alvo de pesquisas, dentre os quais destacam-se as argilas, por possuírem alta área superficial, boa estabilidade química e mecânica, capacidade de troca iônica, além de baixo custo e estarem disponíveis em abundância (ANDRADE *et al.*, 2018; SOPHIA; LIMA, 2018).

Nesse contexto, esta pesquisa teve como objetivo avaliar o processo de adsorção para remoção da cefazolina sódica de recursos hídricos, utilizando a argila comercial organofílica Spectrogel® tipo C como adsorvente, em sistema de leito fixo. Foram realizados estudos considerando a análise dos efeitos da vazão de alimentação e da concentração inicial de adsorvato sobre o processo, além da modelagem de curvas de ruptura. Foi efetuada também a caracterização do material argiloso antes e depois do processo. Buscou-se, assim, a avaliação da viabilidade e das melhores condições para a remoção da cefazolina com o material argiloso em sistema dinâmico.

METODOLOGIA

Foram preparadas soluções de diversas concentrações utilizando cefazolina sódica com alto teor de pureza, doada pela empresa ABL - Antibióticos do Brasil, e água deionizada. Os experimentos em leito fixo foram realizados em uma coluna de vidro encamisada, preenchida com a argila comercial organofílica Spectrogel® tipo C, na qual as soluções de cefazolina eram escoadas no leito em fluxo ascendente com o auxílio de uma bomba peristáltica Masterflex. Alíquotas da solução eram retiradas em tempos pré-determinados por um coletor FC203 Fraction Collector, e suas concentrações eram analisadas no equipamento de espectrofotometria UV (Shimadzu UV)

mini-1240). As curvas de ruptura para cada amostra foram construídas com o auxílio do software SciDAVis®.

Estudo fluidodinâmico

Para o estudo da influência da vazão foram realizados 3 ensaios, em que a concentração foi mantida constante e igual a 0,5 mmol/L e a vazão de alimentação foi variada, assumindo os valores de 0,5, 0,3 e 0,1 mL/min. Os parâmetros relativos ao processo de remoção foram obtidos utilizando as Equações 1 a 5, no caso, a quantidade total removida (q_t) (Equação 1) e a quantidade removida até o ponto de ruptura (q_u) (Equação 2), e as porcentagens de remoção (%REM) nos pontos de ruptura (Equação 3) e no ponto de exaustão (Equação 4). A altura da zona de transferência de massa (ZTM) foi determinada pela Equação 5.

$$q_{t} = \frac{c_{o}Q}{m} \int_{0}^{\infty} \left(1 - \frac{c}{c_{o}}\right) dt \quad (1) \qquad \qquad q_{u} = \frac{c_{o}Q}{m} \int_{0}^{t_{r}} \left(1 - \frac{c}{c_{o}}\right) dt \quad (2) \qquad \qquad \% REM_{r} = \left(\frac{q_{u}m}{c_{o}Qt_{r}}\right) \cdot 100 \quad (3)$$

$$\% REM_{e} = \left(\frac{q_{t}m}{c_{o}Qt_{e}}\right) \cdot 100 \quad (4) \qquad \qquad \qquad ZTM = \left(1 - \frac{q_{u}}{q_{t}}\right) \cdot H_{L} \quad (5)$$

Sendo C₀ a concentração inicial de cefazolina (mmol/L); C a concentração de cefazolina na saída do leito no instante t (mmol/L); Q a vazão do sistema (L/h); m a massa de adsorvente (g); t_r o tempo de ruptura do leito obtido experimentalmente (h); t_e o tempo de exaustão obtido experimentalmente (h); e H_L a altura do leito.

Efeito da concentração

Foram realizados experimentos com a melhor vazão encontrada no ensaio fluidodinâmico, variando a concentração inicial do adsorvato (0,5, 0,3 e 0,1 mmol/L), para estabelecer a influência desse parâmetro no processo. As Equações 1-5 foram novamente empregadas para o cálculo dos parâmetros de eficiência.

Modelos matemáticos

Foram avaliados 4 modelos matemáticos para ajuste aos dados experimentais, com o auxílio dos softwares Maple® 17 e SciDAVis®. Os modelos testados foram o Modelo de Thomas (1948) (Equação 6), o Modelo de Yoon-Nelson (1984) (Equação 7), o Modelo de Yan *et al.* (2001) (Equação 8), e o Modelo DualSD (2020) (Equações 9-11).

$$\frac{C(t)}{C_o} = \frac{1}{1+e^{\frac{K_{Th}}{Q}(q_{Th}\cdot m - C_o \cdot Q \cdot t)}} (6) \qquad \qquad \frac{C(t)}{C_o} = \frac{1}{1+e^{K_{YN}(t^*-t)}} (7) \qquad \qquad \frac{C(t)}{C_o} = 1 - \frac{1}{1+\left(\frac{C_o \cdot Q \cdot t}{q_y \cdot m}\right)^a} (8)$$

$$\frac{\partial C}{\partial t} = D_a \frac{\partial^2 C}{\partial z^2} - u_0 \frac{\partial C}{\partial z} - \frac{\rho_B}{\varepsilon} \frac{\partial q}{\partial t} (9) \qquad \qquad \frac{\partial q}{\partial t} = \frac{\partial}{\partial t} \left(\frac{q_{max}K_LC}{1+K_LC}\right) (10) \qquad \qquad D_a = u_0 d_p \left(\frac{20}{\varepsilon} \frac{D_m}{u_0 d_p} + \frac{1}{2}\right) (11)$$

Em que C(t) e C₀ são, respectivamente, a concentração de soluto na saída e na entrada do leito (mmol/L); K_{Th} é a constante cinética de Thomas (L.mmol/h); Q é a vazão do fluido (L/h); q_{Th} é a capacidade de adsorção do leito (mmol/g); m é a massa de adsorvente (g); t é o tempo de operação (h); K_{YN} é a constante de taxa de velocidade de Yoon e Nelson (h⁻¹); t* é o tempo necessário para reduzir a concentração de soluto em 50% (h); a é o parâmetro adimensional do modelo; q_Y é a capacidade de adsorção máxima (mmol/g); C é a concentração de adsorvato (mmol/L); q é a quantidade de cefazolina (mmol/g); D_a é o coeficiente de dispersão axial; u_o é a velocidade intersticial (cm/min); ρ_B é a densidade do leito fixo(g/L); ϵ é a fração vazia; d_p é o diâmetro das partículas adsorventes (cm); e D_m é a difusividade molecular(cm²/min).

Caracterização do material argiloso

A caracterização foi realizada antes e após a adsorção pelos métodos descritos na Tabela 1.

Análise	Equipamento	Objetivo			
FTIR	Thermo Scientific Nicolet 6700 (Madison,	Determinar os grupos funcionais presentes no			
	USA).	material adsorvente.			
MEV	Modelo LEO Electron Microscopy (LEO				
	440i, MOD. 6070); Polarizador: modelo	Avaliar a morfologia da superfície do material adsorvente.			
	Polaron Sputer Coater (VG Microtech,				
	MOD. SC7620).				
TGA/DTG	Modelo DTG-60 da Marca Shimadzu	Avaliar a estabilidade térmica do material			
IGADIO	Wodelo DTG-oo da Warea Shimadzu.	adsorvente e a pureza da amostra.			
DRX	DRX X' Pert-MPD, (marca Philips).	Determinar a cristalinidade do material adsorvente.			
Porosimetria	Porosimetro AutoPore IV (marca	Determinar a distribuição dos tamanhos dos poros			
de mercúrio	Micromeritics).	a densidade aparente.			
Picnometria a	Picnômetro Accupyc II 1340 (Gas	Determiner e densidade real de meterial adcorrente			
gás hélio	Pycnometer, marca Micrometrics).	Determinar a densidade rear do materiar adsorvente.			
Fisissorção de	BET (Quantachrome, modelo	Determinar a área superficial específica do material			
N2	NOVA1200e).	adsorvente.			

Tabela 1 – Métodos de caracterização da argila

RESULTADOS E DISCUSSÃO

Estudo da adsorção em sistema de leito fixo

As curvas de ruptura obtidas para os ensaios com variação da vazão e da concentração de alimentação são apresentadas nas Figuras 1a e 1b, respectivamente. A Tabela 2 mostra os parâmetros do processo e a eficiência de cada sistema.

Figura 1 - Curvas de ruptura no estudo de variação da vazão (Co = 0,5 mmol/L) (a) e no estudo de variação da concentração (Q = 0,1 mL/min) (b)

Tabela 2 - Parâmetros de eficiência obtidos para cada ensaio

					1			
Co [mmol/L]	Q [mL/min]	t _r [h]	t _e [h]	q _u [mmol/g]	q _e [mmol/g]	%REM _r	%REM _e	ZTM [cm]
0,5	0,5	0,2306	13,033	0,0010	0,010	66,86	10,28	6,19
0,5	0,3	0,4020	20,120	0,0010	0,010	65,98	11,81	6,22
0,5	0,1	1,4040	44,500	0,0020	0,020	71,42	24,40	6,35
0,3	0,1	1,3980	26,500	0,0010	0,005	70,94	23,29	5,88
0,1	0,1	2,3000	32,500	0,0004	0,003	70,00	43,00	6,19

Para o estudo de influência da vazão, percebe-se que todas curvas apresentam tempos de operação curtos. Os maiores valores de capacidade de remoção, até a ruptura (q_r) e até a exaustão (q_e) , foram obtidos para a vazão de 0,1 mL/min, a qual também apresentou as maiores porcentagens de remoção nos pontos de ruptura (%REM_r) e exaustão (%REM_e) e os maiores tempos de ruptura (t_r) e exaustão (t_e) . Desse modo, a vazão que apresentou a maior eficiência do processo de adsorção foi selecionada para avaliação da influência da concentração. Pode-se observar que quanto maior a concentração, menor o tempo necessário para o ponto de ruptura ser atingido. Pela Tabela 2, a concentração de alimentação de 0,5 mmol/L apresenta maiores t_e, %REM_r, q_u e q_e. Já a concentração de 0,3 mmol/L está relacionada a uma menor altura da zona de transferência de massa (ZTM), indicando maior idealidade do sistema. Por fim, a menor concentração de 0,1 mmol/L, apresentou maiores t_r e %REM_e e uma curva de ruptura que indica a formação de multicamadas na adsorção.

Modelagem matemática

A Figura 2 mostra o ajuste dos modelos de Yoon-Nelson (1984), Yan *et al* (2001), Thomas (1948) e DualSD (2020) para curvas de ruptura avaliadas anteriormente, e a Tabela 3 apresenta os parâmetros de ajuste analisados.

Figura 2 – Ajuste dos modelos matemáticos às curvas de ruptura

Nota-se que, para todos os ensaios, os melhores ajustes foram obtidos pelos modelos DualSD (2020) e de Yan *et al.* (2001), com destaque para o primeiro. Já os modelos de Thomas (1948) e Yoon-Nelson (1984) forneceram resultados semelhantes, porém não ajustaram bem as curvas de ruptura, principalmente as referentes aos ensaios com vazão de alimentação de 0,1 mL/min. Os parâmetros mostrados na Tabela 3 confirmam essa análise, sendo que o modelo DualSD apresentou os melhores valores de R^2 e de AICc para todos os ensaios, com exceção do último, reforçando sua melhor adequação ao sistema.

Caracterização do material argiloso

Observou-se, pelas curvas de TG e DTG das argilas natural e contaminada com cefazolina, que ocorreram perdas de massa em função do aumento de temperatura, que podem estar relacionadas à degradação de componentes e à desidratação. A fisissorção de N₂ (BET) indicou isotermas do tipo III, relacionadas a um sólido adsorvente pouco poroso ou com macroporos (THOMMES et al., 2015). A área superficial específica e os volumes de microporos e mesoporos apresentaram valores baixos. Foi observado também que, após a adsorção da cefazolina, houve uma pequena redução das densidades aparente e real, enquanto a porosidade aumentou. Esta se mostrou baixa para as argilas Spectrogel pura (35%) e com cefazolina (43%). A técnica de FTIR indicou espectros praticamente idênticos, sugerindo que não houveram alterações significativas dos grupos funcionais do material após a adsorção. Os espectros de difração de raios X das argilas natural e contaminada foram muito semelhantes, indicando que não houve mudanca da estrutura cristalina da argila. A técnica de MEV mostrou que a argila apresenta uma superfície irregular, com baixa porosidade, sendo que não ocorreram alterações evidentes em sua morfologia após a adsorção. A partir dos espectros de EDX, verificou-se que os principais elementos presentes na argila são a sílica e o alumínio, o que é esperado para as argilas montmorilonitas, conforme Speridião et al., 2014.

CONCLUSÃO

Neste projeto, a adsorção empregando-se a argila comercial organofílica Spectrogel® tipo C para a remoção da cefazolina de soluções aquosas foi avaliada de forma experimental em leito fixo. Concluiu-se que o processo é eficiente e promissor, tendo-se em vista o baixo custo do material adsorvente e o curto tempo de operação. A análise das curvas de ruptura indicou que as porcentagens de remoção foram satisfatórias, destacando-se a vazão de 0,1 mL/min no estudo fluidodinâmico. Em relação à modelagem matemática, o modelo DualSD (2020) se ajustou melhor aos dados experimentais. Por fim, os métodos de caracterização da argila mostraram que esta sofreu poucas alterações após a adsorção, apresentando estabilidade química e baixa porosidade, com o predomínio de macroporos.

REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, Júlia R. de et al. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. **Industrial & Engineering Chemistry Research**, v. 57, n. 9, p. 3103-3127, 2018.

KUMMERER, Klaus. Antibiotics in the aquatic environment – A review – Part I. Chemosphere, v. 75, n. 4, p. 417-434, abr. 2009.

PEDROSO, Tahisa Marcela. **Análise químico-farmacêutica de cefazolina sódica em pó liofilizado para solução injetável**. 2013. Tese (Mestrado em Ciências Farmacêuticas). Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista "Julio de Mesquita Filho", Araraquara, 2013.

PESCARA, Igor Cardoso. **Ocorrência e remoção de contaminantes emergentes por tratamentos convencionais de água e esgoto**. 2014. Tese (Doutorado em Ciências). Instituto de Química, Universidade Estadual de Campinas, Campinas, 2014.

SOPHIA, Carmalin; LIMA, Eder C. Removal of emerging contaminants from the environment by adsorption. **Ecotoxicology and Environmental Safety**, v. 150, p. 1-17, abr. 2018.

SPERIDIÃO, D. D. C. A. et al. Characterization of spectrogel organoclay used to adsorption of petroleum derivatives. **Materials Science Forum**, v. 798-799, p. 558-563, 2014.

THOMMES, Matthias et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). **Pure Appl. Chem**., v. 87, p. 1051-1069, 2015.

ZHANG, Enren et al. High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation. **Bioresource Technology**, v. 249, p. 76-81, fev. 2018.