

ESTUDO DE REAÇÕES DE REDUÇÃO DE OXIGÊNIO POR ANÁLOGOS DE AZUL DA PRÚSSIA

Palavras-Chave: ELETRÓLISE DA ÁGUA, REAÇÃO DE REDUÇÃO DE OXIGÊNIO (RRO), AZUL DA PRÚSSIA E ANÁLOGOS

Autores/as:

Daniel Salomão Doretto - UNICAMP, Thiago V. de B. Ferraz – UNICAMP, Gabriel de O. Aparecido - UNICAMP

Prof. Dr. Juliano Alves Bonacin - UNICAMP

INTRODUÇÃO:

A busca por métodos eficientes para a geração de energia limpa tem sido destaque devido preocupações como, a escassez de recursos não renováveis e mais importante as questões climáticas, como o aquecimento global. Com base nessas premissas têm sido estudado formas de tornar mais viável o uso da água como fonte de energia.

O uso da água para a geração de energia se baseia em duas reações, a reação de redução de oxigênio (ORR), gerando água (1.3) ou peróxido de hidrogênio (1.2), e oxidação da água (WOR) (1.1).

$$2H_2O \to 4e^- + 4H^+ + O_2$$
 (1.1)

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$$
 (1.2)

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 (1.3)

Um grande problema deste método está na energia necessária para que o processo inverso da oxidação da água ocorra, o que torna todo o ciclo ineficiente. Como solução para esse problema, o uso de catalisadores se vê indispensável. Até o momento a platina obteve o melhor resultado

para as atividades catalíticas de ambas as reações, porém devido à escassez e consequente elevado custo desse metal seu uso é inviabilizado.

Possíveis substituintes para os catalisadores de platina metálica tem sido Alternativas estudado. de compostos baseados em azul da Prússia tem se mostrado promissoras. Nesse projeto são estudados três compostos, o azul da Prússia, (Fe₃[Fe(CN)₆]), e dois de seus análogos, o de cobalto, $(Co_3[Fe(CN)_6]),$ de níquel $,(Ni_3[Fe(CN)_6]).$ Para cada um compostos são testadas suas capacidades catalíticas tanto para a reação de redução de oxigênio quanto para a reação de oxidação da água.

METODOLOGIA:

Os compostos estudados foram obtidos a partir de sua deposição sobre a superfície condutora de uma placa de FTO com aproximadamente 2 x 1 cm. Para a formação dos compostos foi usado o sal metálico K₃[Fe^{III}(CN)₆] e dos íons metálicos

Fe²⁺, Co²⁺ e Ni²⁺, formando o azul da Prússia, Fe^{II}₃[Fe^{III}(CN)₆] (PB), e seus análogos de cobalto, Co^{II}₃[Fe^{III}(CN)₆] (Co-Fe PBA) e níquel, Ni^{II}₃[Fe^{III}(CN)₆] (Ni-Fe PBA), respectivamente.

Os filmes dos complexos foram eletrodepositados sobre os eletrodos através da voltametria cíclica em uma célula de três eletrodos.

• Fe^{II}₃[Fe^{III}(CN)₆] (PB)

O filme de azul da prússia, PB, foi obtido aplicando um potenciais entre 0,245 e 0,555 V (SCE), com uma velocidade de varredura de 10 mVs⁻¹, em uma célula livre de oxigênio contendo 10 mM FeCl₃, 10 mM K₃[Fe^{III}(CN)₆], 0,1 M KCl e 0,1M HCl.

• Co^{II}₃[Fe^{III}(CN)₆] (Co-Fe PBA)

Para o análogo de cobalto foi usado um intervalo de potenciais entre 0,0 e 1,1 V (SCE), usando uma velocidade de varredura de 100 mVs⁻¹, em uma célula livre de oxigênio contendo 0,5 mM $Co(NO_3)_2$, 0,25 mM $K_3[Fe^{III}(CN)_6]$ e 0,25 M KCI.

• Ni^{II}₃[Fe^{III}(CN)₆] (Ni-Fe PBA)

Para o análogo de níquel foi usado um intervalo de potenciais entre -0,145 e 0,955 V (SCE), usando uma velocidade de varredura de 50 mVs⁻¹, em uma célula livre de oxigênio contendo 2 mM NiNO₃, 1 mM K₃[Fe^{III}(CN)₆] e 0,25 M KNO₃.

Tabela 1: Parametros	usaaos para ei	etroaeposição ao	os Jiimes de cada	catalisador.

	Parâmetros					
Compostos	Potencial Inicial (V vs SCE)	Potencial Máximo (V vs SCE)	Potencial Mínimo (V vs SCE)	Velocidade de Varredura (mV/s)		
Fe3[Fe(CN)6]	0.0	0.555	0.245	10		
Co ₃ [Fe(CN) ₆]	0.0	1.1	0.0	100		
Ni₃[Fe(CN) ₆]	0.0	0.955	0.145	50		

RESULTADOS E DISCUSSÃO:

As análises eletrocatalíticas foram realizadas usando os eletrodos modificados em células com solução saturada em O₂. Para a análise da atividade eletrocatalítica do azul da prússia para a reação de redução de oxigênio foi usada uma célula contendo 0.1 M KCI, já para seus análogos, Co-PBA e Ni-PBA, foi usada 0.5 M KNO₃. As análises foram realizadas através da voltametria cíclica usando potenciais entre -1.0 e 0.2 V (SCE), usando uma velocidade de varredura de 20 mVs⁻¹. Os resultados obtidos a partir das análises eletrocatalíticas de cada composto pode ser observada pela imagem a seguir.

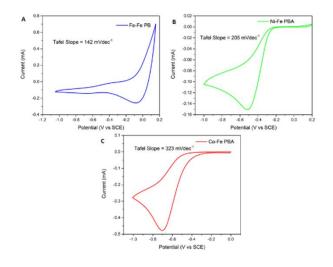
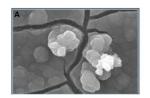



Imagem 1: Reação de redução de oxigênio para o catalisador de PB (A), Ni-PBA (B) e Co-PBA (C) e seus respectivos valores de tafel.

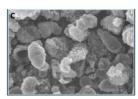


Imagem 2: Imagens de microscopia eletrônica de varredura dos filmes eletrodepositados, PB (A), Ni-PBA (B) e Co-PBA (C).

CONCLUSÕES:

Após as análises eletrocatalíticas dos compostos podemos destacar o Azul da prússia (PB), Fe₃[Fe(CN)₆], que demonstrou um melhor resultado dentre os três catalisadores, apresentando um valor de Tafel de 142 mVdec⁻¹. Podemos destacar também o desempenho apresentado pelo seu análogo de níquel (Ni-PBA), Ni₃[Fe(CN)₆] que obteve um valor de tafel próximo ao obtido pelo PB e que o mesmo ainda possui espaço para melhorias e optimizações.

BIBLIOGRAFIA

- Pires, B. M.; Galdino, F. E.; Bonacin, J. A. Electrocatalytic Reduction of Oxygen by Metal Coordination Polymers Produced from Pentacyanidoferrate(II) Complex. Inorganica Chimica Acta 2017, 466, 166–173.
- Aksoy, M.; Nune, S. V. K.; Karadas, F. A Novel Synthetic Route for the Preparation of an Amorphous Co/Fe Prussian Blue Coordination Compound with High Electrocatalytic Water Oxidation Activity. *Inorg. Chem.* 2016, 55 (9), 4301–4307.
- 3) Han, L.; Tang, P.; Reyes-Carmona, Á.; Rodríguez García, B.; Torréns, M.; Morante, J. R.; Arbiol, J.; Galan-Mascaros, J. R. Enhanced Activity and Acid PH Stability of Prussian Blue-Type Oxygen Evolution Electrocatalysts Processed by Chemical Etching. J. Am. Chem. Soc. 2016, 138 (49), 16037-1604.