

A ESPECTROSCOPIA DE PRÓTONS DE H POR RESSONÂNCIA MAGNÉTICA COMO FERRAMENTA PARA O DIAGNÓSTICO DIFERENCIAL ENTRE TUMORES CEREBRAIS PRIMÁRIOS *versus* SECUNDÁRIOS

Palavras-Chave: Espectroscopia de prótons de H, Ressonância Magnética, Tumor de SNC.

Autores/as: Natália Oliveira Fachinetti [UNICAMP] Milena Krieck Farche [UNICAMP] Prof. Dr. Fabiano Reis (orientador) [UNICAMP]

INTRODUÇÃO:

A espectroscopia de prótons de Hidrogênio por Ressonância Magnética (H-ERM) é uma técnica utilizada para obter informações bioquímicas dos tecidos do corpo através da análise de seus metabólitos. O diagnóstico e tratamento de tumores cerebrais é um grande desafio para a medicina e depende principalmente de exames radiológicos, sobretudo tomografia computadorizada e ressonância magnética (RM). Entretanto, uma biópsia com análise histopatológica é necessária para o diagnóstico definitivo. Desta maneira, informações adicionais através de técnicas não invasivas podem ser de grande valia para o manejo do paciente [1-11]. Este trabalho tem como objetivo verificar o papel da H-ERM para estabelecer quais metabólitos estão presentes em lesões tumorais primárias e secundárias do Sistema Nervoso Central (SNC) e quantificar as relações entre esses metabólitos.

METODOLOGIA:

Foi feita análise retrospectiva de H-ERM com tempo de eco curto (30 ms), realizadas no Hospital de Clínicas da Unicamp, de casos com diagnóstico posteriormente confirmado por estudo anatomopatológico, verificando a especificidade do método. O voxel de RM que foi colocado no interior da lesão, mede 2 x 2 x 2 cm. As máquinas utilizadas tinham 1,5 T ou 3,0 T. Realizando uma melhor análise dos dados coletados, notou-se que algumas curvas de metabólitos tinham o fenômeno de *rescaling* por excesso de lípides que suprime os demais metabólitos. Portanto, esses dados tiveram que ser excluídos da análise. Este trabalho recebeu consultoria estatística através das

disciplinas ME 712 e ME 812 oferecidas pelo Instituto de Matemática, Estatística e Computação Científica (IMECC).

RESULTADOS E DISCUSSÃO:

Sabendo que há um balanceamento do tipo de tumor (Tabela 1), foi avaliado as razões dos metabólitos entre os grupos de tumores. Na Figura 1, percebe-se que a razão Cho/Cr foi menor para os tumores

Tipo de Tumor	Frequência	
1 (primário)	30	
2 (secundário)	31	

Tabela 1: Número de observações para cada tipo de tumor primários comparado às metástases. Na literatura, a relação Cho/Cr é significativamente maior nos gliomas de alto do que nas metástases, tanto na região intratumoral quanto na região peritumoral (neste caso, uma consequência da natureza infiltrativa dos gliomas) [8, 10, 12]. Todavia, se a infiltração do tumor não for significativa, nenhum aumento de Cho é visto [13].

Semelhante ao que ocorre para a razão Cho/Cr, nota-se que a razão NAA/Cr foi menor para os tumores primários do que para as metástases (Figura 2). A redução nos níveis de NAA e na proporção NAA/Cr ocorre em geral nas metástases porque estas não contêm tecido neuro-glial responsável pelo pico de NAA. Neste trabalho foi visto o contrário. A redução da relação NAA/CR foi menor nos tumores primários do que nas metástases. Há alguns tumores primários altamente malignos que podem destruir todos os neurônios e axônios naquele local, vindo a apresentar, também, níveis baixos de NAA/Cr [12, 13, 14].

Figura 1: Boxplot da razão Cho/Cr para cada tipo de tumor. Legenda: (1) tumor primário e (2) tumor secundário.

Figura 2: Boxplot da razão NAA/Cr para cada tipo de tumor. Legenda: (1) tumor primário e (2) tumor secundário.

Para aplicar o modelo de regressão logística aos dados, inicialmente foram consideradas todas as variáveis. Como NAA/Cr e Cho/Cr apresentam um índice de Correlação de Pearson de 0,6066, por ser mais significativa no modelo, foi escolhida manter apenas a NAA/Cr, a fim de evitar multicolinearidade. As variáveis que não apresentaram número significativo de observações foram excluídas do modelo. Dessa forma chegou-se ao seguinte modelo com as demais variáveis (Figura 1):

$$\log\left(\frac{\pi(x_i)}{1-\pi(x_i)}\right) = \beta_{intercepto} + x_{iNAA/Cr}\beta_{NAA/Cr} + x_{iidade}\beta_{idade} + x_{isexo}\beta_{sexo} + x_{iNAA/Cr*idade}\beta_{NAA/Cr*idade} + x_{iNAA/Cr*sexo}\beta_{NAA/Cr*sexo} + x_{iidade*sexo}\beta_{idade*sexo},$$

Figura 3: Modelo final, onde i é referente ao indivíduo i.

Para encontrar o melhor modelo, foram realizados testes, utilizando o teste da razão de verossimilhança para reduzir o modelo, tirando os parâmetros não significativos. Além disso, foi feita a comparação pelos valores do Akaike Information Criterion (AIC) e The Bayesian Information Criterion (BIC). Assim, obteve-se o seguinte modelo reduzido final:

$$\log\left(\frac{\pi(x_i)}{1-\pi(x_i)}\right) = \beta_{intercepto} + x_{iNAA}\beta_{NAA} + x_{iidade}\beta_{idade}.$$

Na Tabela 3 é apresentado o resultado das estimativas dos parâmetros, junto com o *p*valor, do modelo final ajustado (modelo reduzido). Observa-se que todos os *p*-valores apresentaram valores menores que 0,05, evidenciando a significância das variáveis. Como as estimativas destes coeficientes são positivas, significa que o aumento dos valores

	Estimativa	Erro Padrão	<i>p</i> -valor
Intercepto	-4,9518	1,4707	0,0008
Idade	0,0525	0,0252	0,0369
NAA/Cr	1,5233	0,4878	0,0018
Tabela 3: Estimativas dos parâmetros do modelo reduzido.			

dessas variáveis é associado com o aumento da probabilidade de o tumor ser do Tipo 2.

A interpretação da razão de chances (RC) dos coeficientes do modelo reduzido é:

- Para um ano de idade a mais que o paciente tem, a chance de o tumor ser do Tipo 2 é e0,0525 ≈ 1,05 vezes maior do que de ser do Tipo 1, fixando-se o valor da razão NAA/Cr;
- Para o incremento de uma unidade na razão NAA/Cr, a chance de o tumor ser do Tipo 2 é e1,5233 ≈ 4,59 vezes maior do que de ser do Tipo 1, fixando-se a idade.

Como as variáveis têm escalas diferentes, é relevante analisar a interpretação do modelo na discrepância entre os valores observados. A Tabela 4 apresenta três observações selecionadas dos dados originais da pesquisa, seus respectivos valores das variáveis presentes no modelo reduzido, além do tipo de tumor que o paciente foi diagnosticado na biópsia. Aplicando a interpretação da RC nas características destas observações têm-se:

Observação	Idade	NAA/Cr	Tipo de Tumor
10	36	1,32	1
34	36	1,13	2
55	44	1,32	2

Tabela 4: Número das observações e seus respectivos valores observados.

- Um paciente com as mesmas características da observação 10 tem e(1,32−1,13).1,5233 ≈ 1,34 vezes mais chances de carregar um tumor do Tipo 2 do que um paciente com as mesmas características da observação 34;
- Um paciente com as mesmas características da observação 55 tem e(44−36).0,0525 ≈ 1,52 vezes mais chances de possuir um tumor do Tipo 2 do que um paciente com as mesmas características da observação 10;

A matriz de confusão do modelo final escolhido pode ser vista na Tabela 5. É possível perceber que o modelo predisse corretamente a maioria das observações, o que indica que o modelo tem um razoável potencial preditivo.

		Diagnosticado	
		1	2
Dradita	1	22	8
Treuno	2	8	23
Tabela 5: Matriz de confusão do			

nodelo final: Frequência do tipo de tumor predito e diagnosticado. As estatísticas e seus valores obtidos a partir da matriz de confusão são:

- A acurácia foi 0,7377, o que indica que o modelo predisse 73,77% dos tipos de tumores corretamente, o que reforça os indícios de um poder de predição razoável;
- A sensitividade foi 0,7333, ou seja, o modelo tem uma capacidade razoável de predizer tumores do Tipo 1 corretamente;
- A especificidade foi 0,7419, ou seja, o modelo tem uma capacidade razoável de predizer tumores do Tipo 2 corretamente;

Para fazer o diagnóstico analisando a semelhança entre os tipos de tumores preditos e os diagnosticados foi utilizado o coeficiente de *Kappa* e, no caso do modelo final, ele foi de 0,4753, o que indica que há uma concordância moderada entre os tipos de tumores diagnosticados e os preditos pelo modelo. Isto reforça a capacidade razoável do modelo em predizer os tipos de tumores corretamente.

Outro método importante para investigar a capacidade preditiva do modelo final é através da curva ROC (Figura 4). Nota-se que o modelo apresenta um equilíbrio entre a sensitividade e a especificidade ao utilizar o ponto de corte de 0,4, ou seja, se o modelo predizer que a observação tem probabilidade menor que 0,4 de o tumor ser do Tipo 2, ele é classificado como do Tipo 1; caso contrário,

Figura 4: Curva ROC do modelo final.

é classificado como do Tipo 2. Para todos os resultados deste projeto foi utilizado o ponto de corte de 0,4, pois é o ponto que melhor aproxima e maximiza a especificidade e a sensitividade simultaneamente. A AUC (área sob a curva) da curva ROC do modelo é de 0,8495, o que é um valor que, pela proximidade de 1, também evidencia uma boa capacidade de predição do modelo.

O nível de confiança obtido pela validação cruzada com 10 partições (3-Fold Cross-Validation) é de 95%, ou seja, há 95% de chances de o intervalo conter a verdadeira acurácia do modelo (Tabela 6). O resultado reforça que o modelo tem um poder de predição razoável, pois a borda inferior é de

Medida	Estimativa Pontual	Intervalo de Confiança (95%)	
Acurácia	0,7281	[0,5532; 0,9030]	
Tabela 6: Intervalo de confiança da acurácia obtido pela validação cruzada.			

0,5532, ou seja, o modelo é capaz de acertar mais da metade das previsões que realiza.

CONCLUSÕES:

Através dos dados coletados foi possível obter um modelo para interpretar se um paciente carrega um tumor do tipo primário ou secundário, com a capacidade de predizer, em média, 73% das observações corretamente. Existem evidências que quanto maior a idade do paciente, maior é a chance de o tumor ser secundário. Ademais, os dados demonstram que quanto maior a razão NAA/Cr, maior é a chance de o tumor ser metastático. Concomitantemente, é possível concluir que o sexo do paciente não influencia no tipo de tumor diagnosticado. É importante ressaltar que estas conclusões valem para a amostra dos pacientes do Hospital de Clínicas da Unicamp que têm tumor cerebral.

BIBLIOGRAFIA

[1] Goulardins CR, Reis F, Schwingel R. A importância da detecção de picos de glutamina/glutamato pela técnica de espectroscopia de prótons em lesões extra-axiais. XXV Congresso de Iniciação Científica da UNICAMP (2017). DOI: 10.19146/pibic-2017-77917

[2] Leite CC. Espectroscopia de prótons por ressonância magnética. Radiol Bras (2001) 34(1):V–VI. DOI: 10.1590/S0100-39842001000100001

[3] Bluml S, Panigrahy A. **MR Spectroscopy of pediatric Brains Disorders. Springer Science** (2013) 11-23. DOI 10.1007/978-1-4419-5864-8

[4] Ramin SL, Tognola WA, Spolti A. Proton magnetic resonance spectroscopy: clinical applications in patients with brain lesions. São Paulo Med J (2003) 121(6):254-259. DOI: 10.1590/S1516-31802003000600008

[5] Sajjad Z, Alam S. Magnetic resonance spectroscopy (MRS): basic principles and applications in focal brains lesions. Pakistan Journal of Neurological Sciences (2007) 2(1):42-46.

[6] Rudkin T, Arnold D. Proton Magnetic Resonance Spectroscopy for the Diagnosis and Management of Cerebral Disorders. Basic Science Seminars in Neurology (1999) 56:919-926. DOI: 10.1001/archneur.56.8.919

[7] Majós *et al.* Proton magnetic resonance spectroscopy of human brain tumors: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol (2003) 13:582–591. DOI 10.1007/s00330-002-1547-3

[8] Lukas *et al.* **Brain tumor classification based on long echo proton MRS signals**. Artificial Intelligence in Medicine (2004) 31:73-89. DOI: 10.1016/j.artmed.2004.01.001

[9] Horská & Barker. Imaging of Brain tumors: MR Spectroscopy and Metabolic Imaging. Neuroimag Clin N Am 20 (2010) 293–310. DOI:10.1016/j.nic.2010.04.003

[10] Opstad *et al.* Differentiation of Metastases from High-Grade Gliomas Using Short Echo Time H Spectroscopy. Journal of Magnetic Resonance Imaging (2004) 20:187–192. DOI 10.1002/jmri.20093

[11] Callot *et al.* **H MR spectroscopy of human brain tumours: a practical approach**. European Journal of Radiology (2008) 67: 268-274. DOI: 10.1148/radiol.2432060493

[12] Hamesa *et al.* Magnetic resonance spectroscopy and diffusion imaging in the evaluation of neoplastic brain lesions. The Egyptian Journal of Radiology and Nuclear Medicine (2014) 45, 485–493. DOI: 10.1016/j.ejrnm.2014.03.002

[13] Brandão & Castillo. Adult Brain Tumors: Clinical Applications of Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 24 (2016) 781–809. DOI: 10.1016/j.mric.2016.07.005

[14] Chernov *et al.* **Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile**. Int J Clin Oncol (2006) 11:375–384. DOI 10.1007/s10147-006-0589-y