



# MACROFAUNA EDÁFICA E ESTOQUE DE CARBONO EM SISTEMAS CONSERVACIONISTAS

Allan Peterson Bonani Moço<sup>1</sup>, Vagner R. Ariedi Junior<sup>2</sup>, Zigomar M. de Souza<sup>3</sup>

<sup>1</sup>Graduando em Engenharia Agrícola, FEAGRI/UNICAMP, Campinas-SP

**RESUMO** - Os sistemas conservacionistas de produção diferenciam-se da agricultura convencional pela promoção da melhoria dos atributos físicos, químicos e biológicos do solo, que refletem na melhora da sua qualidade. Há a necessidade do desenvolvimento de práticas agrícolas que promovam a conservação e a utilização dos serviços ecossistêmicos para o desenvolvimento sustentável e para a produção agrícola. O objetivo deste projeto foi avaliar se o Sistema Agroflorestal (SAF) mecanizado e em larga escala apresenta melhores resultados com relação ao estoque de carbono no solo, e à comunidade de macrofauna edáfica, quando comparado ao sistema de Integração-Lavoura-Pecuária-Floresta (ILPF) em área de Neossolo Quartzarênico. Foram realizadas coletas de amostras em campo entre 2018 e 2020 para as análises de estoque de carbono no solo e da macrofauna edáfica. As atividades realizadas foram de apoio nas análises das amostras em laboratório e nas análises do estoque de carbono no solo e de diversidade da macrofauna edáfica. Os diferentes usos e manejos do solo não influenciaram o estoque de carbono do solo, não havendo diferença estatisticamente significativa entre os tratamentos. A comunidade de macrofauna edáfica foi influenciada pelos diferentes usos e manejos do solo, mesmo não havendo diferença estatisticamente significativa entre os tratamentos. O SAF apresentou melhores resultados em termos de abundância, densidade e riqueza, enquanto que o ILPF apresentou maior índice de diversidade, menor dominância e foi mais equitativo.

Palavras-chave: biota do solo, sistema agroflorestal, sistema de integração-lavoura-pecuária-floresta.

# INTRODUÇÃO

O atual modelo de desenvolvimento agropecuário necessita ser repensando de forma mais ampla, com uma visão a médio e longo prazo no desenvolvimento realmente sustentável sob a ótica de produção e conservação dos recursos naturais (Gomes et al., 2017). Uma forma é a adoção de Sistemas Agroflorestais (SAF), que tentam recriar condições presentes nos ambientes naturais, promovendo a oferta dos principais serviços ecossistêmicos presentes em sistemas não antropogenizados (Vasconcellos e Beltrão, 2018), que apresentam também potencial para reduzir a degradação do solo e diminuir a pressão sobre as áreas de florestas, favorecendo o equilíbrio entre o solo, a água, o ar, o microclima, a paisagem, a flora e a fauna, aumentando a resiliência e a capacidade adaptativa dos agroecossistemas (Amaral et al., 2018).

Outra estratégia são os sistemas de Integração-Lavoura-Pecuária-Floresta (ILPF), que incorporam atividades de produção agrícola, pecuária e florestal, em dimensão espacial e/ou temporal, buscando efeitos sinérgicos entre os componentes do agroecossistema para a sustentabilidade da unidade de produção,

<sup>&</sup>lt;sup>2</sup>Doutorando em Engenharia Agrícola (Água e Solo), FEAGRI/UNICAMP, Campinas-SP

<sup>&</sup>lt;sup>3</sup>Engenheiro Agrônomo, Prof. Associado, FEAGRI/UNICAMP, Campinas-SP

contemplando sua adequação ambiental e a valorização do capital natural (Balbino et al., 2019).

De acordo com Baretta et al. (2011) e Rosa et al. (2015), os sistemas conservacionistas de manejo do solo podem reduzir os impactos sobre a biodiversidade edáfica, pois melhoraram os atributos físicos e químicos, quando comparados com manejos associados à monocultura e ao preparo excessivo do solo. E, segundo Ashford et al. (2013) e Rosa et al. (2015), aumentam a quantidade e qualidade dos resíduos orgânicos, favorecendo o estabelecimento de determinados táxons. Para Lima et al. (2010), a fauna edáfica representa uma força motriz na decomposição e ciclagem dos nutrientes, pois ocupa diversos níveis tróficos dentro da cadeia alimentar no solo, afetando a produção primária de maneira direta e indireta.

Segundo Alves et al. (2008), a quantidade e a qualidade da cobertura do solo também influenciam a abundância e a diversidade da macrofauna do solo. Para Korasaki et al. (2013), quando a biodiversidade é alta e o solo é saudável, como nos ecossistemas naturais, o controle de doenças e pragas se dá pela interação entre os organismos do solo.

Diante do quadro de insustentabilidade e degradação ambiental e social nas áreas agrícolas, existe a urgência da adoção de modelos sustentáveis e conservacionistas. Como alternativa, sistemas de Integração-Lavoura-Pecuária e Sistemas Agroflorestais devem ser adotados, priorizados e estimulados. Portanto, o objetivo deste projeto foi avaliar se o Sistema Agroflorestal (SAF) mecanizado e em larga escala apresenta melhores resultados com relação ao estoque de carbono no solo, e à comunidade de macrofauna edáfica, quando comparado ao sistema de Integração-Lavoura-Pecuária-Floresta (ILPF) em área de Neossolo Quartzarênico.

# **MATERIAL E MÉTODOS**

#### Localização da área de estudo

O estudo foi realizado em campo na Fazenda da Toca, no município de Itirapina-SP. Os dados foram coletados em duas áreas, uma com Sistema Agroflorestal (SAF) mecanizado e em larga escala, desenhado para a produção de frutíferas e cultivo de eucalipto, e uma área com Sistema de Integração-Lavoura-Pecuária-Floresta (ILPF). A faixa de solo que compreende as áreas é formada por Neossolo Quartzarênico, essencialmente arenoso.

## Estoque de Carbono do solo

Para a quantificação e determinação do estoque de carbono do solo foram coletadas 90 amostras nos mesmos pontos de coleta da macrofauna edáfica. A determinação dos teores de carbono (C) foi realizada por combustão a seco usando um analisador elementar. Os estoques foram calculados com base em massa equivalente, de acordo com a metodologia proposta por Ellert e Bettany (1995).

#### Comunidade de macrofauna edáfica

A amostragem ocorreu seguindo o método recomendado pelo Programa "Tropical Soil Biology and Fertility" - TSBF (Anderson e Ingram, 1993). Em cada área, foram coletados cinco monólitos de solo e sua cobertura vegetal diretamente associada, com o auxílio de um gabarito metálico com 0,25 x 0,25 m e 0,10 m de profundidade. As coletas foram realizadas nas profundidades de 0,00-0,10, 0,10-0,20 e 0,20- 0,30 m, distanciados 10 metros entre si, em linha. A triagem das amostras foi realizada manualmente. A identificação e a contagem foram efetuadas com auxílio de microscópio estereoscópio binocular em laboratório.

A comunidade de macrofauna edáfica foi caracterizada em termos de composição, na qual, os indivíduos foram identificados e classificados ao nível taxonômico de Classe/Ordem, e analisada em termos de riqueza, abundância, densidade (ind/m<sup>-2</sup>) e diversidade, calculada pelos índices de Shannon-Weaver (H'), de Simpson (1-D) e uniformidade de Pielou (J).

A ocorrência de diferenças estatisticamente significativas no estoque de carbono do solo e na comunidade de macrofauna edáfica entre os tratamentos foi avaliada por meio de Análise de Variância (ANOVA) com a aplicação do teste f de significância. Os resultados foram submetidos ao teste de Tukey ao nível de 5% de probabilidade (p<0,05), por meio do Programa estatístico *Paleontological Statistics Software Package For Education and Data Analysis* – PAST 4.3.0 (Hammer *et al.*, 2001).

# RESULTADOS E DISCUSSÃO

#### **Estoque de Carbono**

De acordo a análise de estoque de carbono no solo, não houve diferenças estatísticas significativas entre os tratamentos por meio do Teste de Tukey a 5% de probabilidade (p<0,05), como apresentado na tabela 1, e pode ser explicada como apresentado por Smith (2008), que identifica variáveis semelhantes em ambos os tratamentos como condições climáticas locais, relevo, drenagem e tipo de manejo de solo adotado, como sendo fatores determinantes no estoque de carbono do solo. Somado a isso, Corado Neto et al. (2015) destaca que as perdas de carbono orgânico podem estar associadas a condições de baixa cobertura vegetal e elevado escoamento superficial da água, estando este último associado à conformação do terreno em certa topografia.

De acordo com Alves (2009) e Balbino et al. (2019), no SAF e no ILPF há o estabelecimento de uma cobertura vegetal perene. E, além disso, as técnicas de manejo que compõem os sistemas conservacionistas favorecem a manutenção de resíduos sobre o solo e reduzem o escorrimento superficial (WALLACE, 2000).

**Tabela 1:** Estoque de carbono nas áreas de SAF e ILPF nas profundidades de 0,00-0,10m, 0,10-0,20m e 0,20-0,30m, na Fazenda da Toca, município de Itirapina, estado de São Paulo.

| Profundidade  | SAF  | ILPF | Média |  |  |  |  |  |  |  |
|---------------|------|------|-------|--|--|--|--|--|--|--|
| Estoque C (%) |      |      |       |  |  |  |  |  |  |  |
| 0,00-0,10m    | 2,30 | 1,75 | 2,03  |  |  |  |  |  |  |  |
| 0,10-0,20m    | 0,93 | 1,26 | 1,10  |  |  |  |  |  |  |  |
| 0,20-0,30m    | 0,88 | 1,12 | 1,00  |  |  |  |  |  |  |  |
| Média         | 1,37 | 1,38 |       |  |  |  |  |  |  |  |

SAF = Sistema Agroflorestal; ILPF = Sistema de Integração-Lavoura-Pecuária-Floresta. Não houve diferenças estatisticamente significativas (P<0,05) ao nível de probabilidade de 5% por meio do Teste de Tukey.

### Comunidade de macrofauna edáfica

De acordo com as análises da macrofauna edáfica, não houve diferenças estatísticas significativas entre os tratamentos, por meio do Teste de Tukey a 5% de probabilidade (p<0,05).

Os resultados de riqueza, abundância, densidade e diversidade da macrofauna edáfica nas áreas de SAF e ILPF são apresentados na Tabela 2. Com relação aos índices de diversidade, o ILPF mostrou-se mais diverso pelo índice de diversidade de Shannon-Weaver (H'), com menor dominância pelo índice de dominância de Simpson (1-D), e maior uniformidade pelo índice de uniformidade de Pielou (J), como apresentado na tabela 2.

A classe Insecta foi a mais abundante e representativa, com 8 ordens, ocorrendo em ambos os tratamentos. As principais ordens registradas em ordem decrescente de importância foram, Haplotaxida (minhocas), Coleoptera (besouros), Hymenoptera (formigas), Blattodea/Blattaria (baratas), Blattodea/Isoptera (cupins) e Julida (piolhos de cobra).

De acordo com Azevedo et al. (2008), é comumente encontrado em trabalhos com fauna do solo, menores índices de uniformidade de Pielou (J) e menores índices de dominância de Simpson (1-D), tendência explicitada nos tratamentos estudados. Além disso, de acordo com Carvalho et al. (2017) foi encontrado em área de mata nativa valores bem semelhantes (0,9389) de H' com o SAF (0,93) estudado neste projeto e valores superiores foram observados no ILPF (1,31), fator de grande interesse já que nos sistemas conservacionistas toma-se como referência de funcionamento o sistema natural sem alteração antropogênica.

Os índices de Shannon-Weaver (H') e Simpson (1-D) podem ser usados para explicitar uma maior diversidade no tratamento ILPF, já que Martini et al. (2010) indica que para maiores valores de 1-D e H', maiores diversidades podem ser esperadas. A maior dominância e menor diversidade no SAF demonstrada pelo índice de Simpson, é justificada pela enorme abundância de indivíduos da ordem Haplotaxida (minhocas), do qual 416 indivíduos desta ordem em número absoluto representaram 77,75% do total de indivíduos encontrados no tratamento.

**Tabela 2:** Riqueza, abundância, densidade e diversidade dos taxa da comunidade de macrofauna edáfica nas áreas de SAF e ILPF, na Fazenda da Toca, município de Itirapina, estado de São Paulo.

| Classe                   | Ordem                                 | SAF   | ILPF  | Abs  | Média ± | <b>Abd</b> (%) | ind/m <sup>-2</sup> |
|--------------------------|---------------------------------------|-------|-------|------|---------|----------------|---------------------|
| Arachnida                | Araneae                               | 1     | 3     | 4    | 2,00    | 0,39           | 0,02                |
| Arachnida                | ida Opiliones                         |       | 6     | 8    | 4,00    | 0,77           | 0,04                |
| Chilopoda Geophilomorpha |                                       | 1     | 0     | 1    | 0,50    | 0,10           | 0,01                |
| Chilopoda                | hilopoda Lithobiomorpha               |       | 0     | 2    | 1,00    | 0,19           | 0,01                |
| Chilopoda                | Scolopendromorpha                     | 1     | 0     | 1    | 0,50    | 0,10           | 0,01                |
| Diplopoda                | Julida                                | 2     | 30    | 32   | 16,00   | 3,08           | 0,16                |
| Gastropoda               | Pulmonata                             | 3     | 1     | 4    | 2,00    | 0,39           | 0,02                |
| Insecta                  | Insecta Blattodea / Subordem Isoptera |       | 30    | 30   | 15,00   | 2,89           | 0,15                |
| Insecta                  | nsecta Blattodea / Subordem Blattaria |       | 27    | 36   | 18,00   | 3,47           | 0,18                |
| Insecta                  | Coleoptera                            | 49    | 61    | 110  | 55,00   | 10,60          | 0,55                |
| Insecta                  | Dermaptera                            | 0     | 8     | 8    | 4,00    | 0,77           | 0,04                |
| Insecta                  | Hemiptera / Subordem Homoptera        | 4     | 3     | 7    | 3,50    | 0,67           | 0,04                |
| Insecta                  | Hymenoptera                           | 32    | 7     | 39   | 19,50   | 3,76           | 0,20                |
| Insecta                  | Lepidoptera                           | 7     | 1     | 8    | 4,00    | 0,77           | 0,04                |
| Insecta                  | Orthoptera                            | 1     | 1     | 2    | 1,00    | 0,19           | 0,01                |
| Malacostraca             | Isopoda                               | 5     | 0     | 5    | 2,50    | 0,48           | 0,03                |
| Clitellata               | Haplotaxida                           | 416   | 325   | 741  | 370,50  | 71,39          | 3,71                |
|                          | Abundância absoluta                   | 535   | 503   | 1038 |         |                |                     |
|                          | Média ±                               | 31,47 | 29,59 |      |         |                |                     |
|                          | Abundância relativa (%)               | 51,54 | 48,46 |      |         |                |                     |
|                          | Densidade (ind/m <sup>-2</sup> )      | 2,68  | 2,52  |      |         |                |                     |
|                          | Riqueza observada                     | 15    | 13    |      |         |                |                     |
|                          | Riqueza exclusiva                     | 5     | 2     |      |         |                |                     |
|                          | H'                                    | 0,93  | 1,31  |      |         |                |                     |
|                          | 1-D                                   | 0,38  | 0,56  |      |         |                |                     |
|                          | J                                     | 0,34  | 0,51  |      |         |                |                     |

SAF = Sistema Agroflorestal; ILPF = Sistema de Integração-Lavoura-Pecuária-Floresta; Abs = Abundância absoluta;  $\overline{R}$ el (%) = Abundância relativa;  $\overline{H}$ ' = Índice de diversidade de Shannon-Weaver; 1-D = Índice de dominância de Simpson;  $\overline{J}$  = Índice de Uniformidade de Pielou. Não houve diferenças estatisticamente significativas (P<0,05) ao nível de probabilidade de 5% por meio do Teste de Tukey.

#### CONCLUSÃO

Os diferentes usos e manejos do solo não influenciaram o estoque de carbono do solo, mas influenciaram a comunidade de macrofauna edáfica. O SAF apresentou melhores resultados em termos de abundância, densidade e riqueza, enquanto que o ILPF apresentou maior índice de diversidade, menor dominância e foi mais equitativo.

#### **AGRADECIMENTOS**

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (PIBIC/CNPq) pelo apoio financeiro, e à Fazenda da Toca Orgânicos.

# Referências:

ALVES, M. V.; SANTOS, J. C. P.; GOIS, D. T.; ALBERTON, J. V.; BARETTA, D. Macrofauna do solo influenciada pelo uso de fertilizantes químicos e dejetos de suínos no oeste do estado de Santa Catarina. **Revista Brasileira de Ciência do Solo**, Viçosa, v.32, p.589-598, 2008.

ALVES, L. M. Sistemas Agroflorestais (SAF's) na restauração de ambientes degradados. **Programa de Pós-graduação em Ecologia Aplicada ao Manejo e Conservação de Recursos Naturais**, UFJF, 2009.

- AMARAL, E. F. do; OLIVEIRA, T. K.; BARDALES, N. G.; ARAÚJO, E. A.; OLIVEIRA, C. H. A.; SILVA, D. V.; COSTA MORENO, N. M. Caracterização de sistemas agroflorestais com o uso de ferramentas de geoestatística. Rio Branco, AC: Embrapa Acre, 2018, 31p. II. (Boletim de Pesquisa e Desenvolvimento, 58).
- ANDERSON, J. M.; INGRAM, J. S. I. (Eds.). **Tropical soil biology and fertility: a handbook of methods**. 2nd ed. Wallingford: CAB International, 1993. 221 p.
- ASHFORD, O. S.; FOSTER, W. A.; TURNER, B. L.; SAYER, E. J.; SUTCLIFFE, L.; TANNER, E. V. J. Litter manipulation and the soil arthropod community in a lowland tropical rainforest. **Soil Biology and Biochemistry**, v.62, n.1, p.5-12, 2013.
- AZEVEDO, V. F.; PEREIRA, M. G.; CORRÊA NETO, T. A; SCHERMACK, V.; MACHADO, D. L. Alterações na comunidade da fauna edáfica em função da queima em floresta secundária na FLONA Mário Xavier, Seropédica RJ. Revista Universidade Rural. Série Ciências da Vida, v. 28, p. 9-17, 2008.
- BALBINO, L. C.; KICHEL, A. N.; BUNGENSTAB, D. J.; GIOLO DE ALMEIDA, R. **Sistemas de integração: conceitos, considerações, contribuições e desafios**. In: BUNGENSTAB, D. J.; GIOLO DE ALMEIDA, R.; LAURA, V. A.; BALBINO, L. C.; FERREIRA, A. D. [Eds.]. ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília, DF: Embrapa, 2019. 835 p.
- BARETTA, D.; SANTOS, J. C. P.; SEGAT, J. C.; GEREMIA, E. V.; OLIVEIRA FILHO, L. C. I.; ALVES, M. V. Fauna edáfica e qualidade do solo. In: KLAUBERG FILHO, O.; MAFRA, A. L.; GATIBONI, L. C. (Eds.). Tópicos em Ciência do Solo. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, v.7, p.119-170, 2011.
- CARVALHO, J. S.; LIMA, A. C. R.; HENRIQUEZ, J. M. O.; STÖCKER, C. M.; PINO, B. S. D.; RIBEIRO, T. R.; MORSELLI, T. B. G. A. Avaliação da fauna edáfica sob cultivo de pessegueiro agroecológico, convencional e vegetação nativa. **Revista da jornada da pós-graduação e pesquisa** CONGREGA URCAMP, 2017.
- CORADO NETO, F. C.; SAMPAIO, F. de M. T.; VELOSO, M. E. C.; MATIAS, S. S. R.; ANDRADE, F. R.; LOBATO, M. G. R. Variabilidade espacial dos agregados e carbono orgânico total em Neossolo Litólico Eutrófico no município de Gilbués, PI. **Revista de Ciências Agrárias**, v. 58, n. 1, p. 75-83, jan./mar. 2015.
- ELLERT, B. H.; BETTANY, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. **Canadian Journal of Soil Science**, v.75, p.529-538, 1995.
- GOMES, H. B.; CULLEN JUNIOR, L.; SOUZA, A. S.; CAMPOS, N. R.; MARIN, W. S. L. Sistemas agroflorestais: perspectivas e desafios na ampliação de sistemas produtivos sustentáveis para a agricultura familiar no Pontal do Paranapanema, SP. In: CANUTO, J. C. (Ed.). Sistemas Agroflorestais: experiências e reflexões. Brasília: Embrapa, 2017. 216 p.
- HAMMER, O., HARPER, D. A. T., RYAN, P. D. PAST: Paleontological Statistics Software Packaged for Education and Data Analysis. Palaentologia Electronica, 4, 1-9. 2001.
- KORASAKI, V.; MORAIS, J. W.; BRAGA, R. F. Macrofauna. In: MOREIRA. F. M. S.; CARES, J. E.; ZANETTI, R.; STÜRMER, S. L. (Eds.). **O ecossistema solo: componentes, relações ecológicas e efeitos na produção vegetal**. Lavras: Editora da UFLA, p.79-128. 2013.
- LIMA, S. S. de; AQUINO, A. M.; LEITE, L. F. C.; VELÁSQUEZ, E.; LAVELLE, P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas. **Pesquisa Agropecuária Brasileira**, Brasília, v.45, n.3, p.322-331, 2010.
- MARTINI, A. M. Z.; PRADO, P. I. K. L. Índices de diversidade de espécies. **Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade (PPGECB)** UESC, 2010.
- ROSA, M. G.; KLAUBERG FILHO, O.; BARTZ, M. L. C.; MAFRA, A. L.; AFONSO DE SOUSA, J. P. F.; BARETTA, D. Macrofauna edáfica e atributos físicos e químicos em sistemas de uso do solo no Planalto Catarinense. **Revista Brasileira de Ciência do Solo**, v.39, n.6, p.1544-1553, 2015.
- SMITH, P. Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, v. 81, n. 2, p. 169-178, Jun. 2008.
- VASCONCELLOS, R. C.; BELTRÃO, N. E. S. Avaliação de prestação de serviços ecossistêmicos em sistemas agroflorestais através de indicadores ambientais. **Interações**, v.19, n.1, p.209-220, 2018.
- WALLACE, J. S. Increasing agricultural water use efficiency to meet future food production." **Agriculture, Ecosystems & Environment**, v. 82, n. 1-3, p. 105-119, 2000.