

A IMOBILIZAÇÃO DE UMA PROTEASE COMERCIAL EM QUITOSANA AUMENTOU A SUA ESTABILIDADE CATALÍTICA

Palavras-Chave: protease imobilizada, quitosana, ligação covalente.

Autores:

Henrique Petrucci Xavier Soares*, Enylson Xavier Ramalho [FEA – Unicamp] Prof. Dr. Ruann Janser Soares de Castro (orientador) [FEA – Unicamp]

INTRODUÇÃO

As enzimas passaram a ser isoladas e aplicadas em diversos processos industriais devido a algumas características como alto grau de especificidade e eficiência, biodegradabilidade, condições reacionais amenas de temperatura e pH, sendo, portanto, uma alternativa ambientalmente amigável à catálise química¹.

Contudo, para aumentar a escala de transformações catalíticas, algumas enzimas apresentam modificações negativas de suas características quando submetidas aos processos, como perda de atividade e impossibilidade de reciclagem. Para contornar tais efeitos negativos, diferentes técnicas foram desenvolvidas, como a imobilização, uma tecnologia promissora de modificação de enzimas que torna sua estrutura mais rígida e insolúvel no meio reacional, visando proteger, estabilizar, separar e reciclar essas biomoléculas, dentre outras finalidades².

Os métodos de imobilização podem ser por encapsulação, ou por formação de ligação. Estes variam de adsorção física, ligações iônicas e quelação, que são reversíveis, às ligações covalentes, que são irreversíveis e mais estáveis³. A imobilização de enzimas por ligação covalente é um dos métodos mais estudados por se tratar de uma interação forte, havendo pouca ou nenhuma liberação da enzima para o meio em diversas condições operacionais¹.

Deve-se escolher um suporte adequado para realização da imobilização enzimática, podendo ser orgânico ou inorgânico. A quitosana é um polissacarídeo com grande atuação na imobilização de enzimas, por apresentar grupos funcionais amino e hidroxila em sua superfície, formando ligação covalente⁴.

O objetivo deste trabalho foi imobilizar uma protease comercial alcalina de *Bacillus licheniformis* (Protezyn APP 3000) por ligação covalente em quitosana modificada por glutaraldeído e caracterizá-la bioquimicamente utilizando parâmetros de imobilização.

METODOLOGIA

Os suportes foram obtidos a partir da modificação de géis de quitosana e alginato com glutaraldeído. Para o gel de quitosana, foram preparadas diferentes concentrações (2,5 e 5,0% m/v) por dissolução em ácido acético (5% v/v) e posterior agitação durante 1 h. Em seguida, os géis foram pulverizados em NaOH (1 mol/L) na proporção de 1:9 (gel de quitosana:NaOH v/v) e a suspensão obtida foi agitada suavemente durante 24 h à temperatura ambiente. As partículas de quitosana coaguladas foram lavadas exaustivamente com água destilada e filtradas a vácuo.

O gel de quitosana-alginato (2,5% m/v de cada) foi preparado de forma análoga ao anterior, sendo que o alginato só foi adicionado à mistura após a dissolução da quitosana sendo agitada por mais 30 min. Os suportes foram então modificados sendo suspensos em uma solução aquosa de glutaraldeído (5% v/v) na proporção de 1:10 (suporte:solução m/v) e mantidos sob agitação suave durante 1 h à temperatura ambiente. Posteriormente, os suportes foram lavados exaustivamente com água destilada e filtrados a vácuo. O suporte modificado foi armazenado sob refrigeração até o uso.

A enzima Protezyn APP 3000, gentilmente doada pela empresa Prozyn, foi imobilizada nos suportes produzidos na proporção padrão de 1:100 (enzima:suporte m/m). Os suportes modificados foram adicionados a uma solução aquosa de enzima na proporção de 1:10 (suporte:solução m/v). As suspensões foram suavemente agitadas durante 2 h à temperatura de 20°C. Em seguida, após coletar alíquotas do sobrenadante para determinação da atividade proteolítica e do teor de proteína residuais, as enzimas imobilizadas produzidas foram lavadas exaustivamente com água destilada, filtradas à vácuo e armazenadas sob refrigeração até o uso.

Quanto aos ensaios analíticos, o teor de proteína inicial e residual das soluções de imobilização foi determinado pelo método modificado de Lowry⁵ e a atividade enzimática foi determinada utilizando azocaseína como substrato conforme protocolo proposto por Charney e Tomarelli⁶ e adaptado por De Castro e Sato⁷.

As enzimas imobilizadas foram então caracterizadas quanto aos seguintes parâmetros: carregamento, eficiência e efetividade. O carregamento é a relação entre a concentração de enzima imobilizada (diferença entre o teor de proteína em solução antes e após a imobilização) e a concentração de enzima disponibilizada (teor de proteína na solução inicial). A eficiência foi definida em relação à atividade recuperada, sendo a razão entre a atividade proteolítica da enzima imobilizada e a atividade proteolítica na solução inicial (antes da imobilização). E a efetividade foi definida como a relação entre a atividade proteolítica da enzima imobilizada e a atividade proteolítica esperada (diferença entre a atividade proteolítica em solução antes e após a imobilização).

A partir da análise dos parâmetros de imobilização foi selecionada a melhor estratégia de imobilização da enzima para estudo nas etapas seguintes. O efeito da temperatura sobre a atividade proteolítica foi avaliado no intervalo de 45 a 60°C, sendo esta última a temperatura ótima da enzima livre informada pelo fabricante.

Para determinar a estabilidade térmica, as enzimas livre e imobilizada foram incubadas na ausência de substrato durante 180 min nas temperaturas de 55 e 60°C, pH 9,0. Periodicamente, amostras foram retiradas para determinação de suas atividades residuais. O tempo de meia vida (tempo necessário para que a atividade residual da enzima atinja metade da atividade inicial) foi determinado a partir do seguinte modelo de decaimento exponencial que expressa a inativação térmica das enzimas: $Atv = Atv_0 \cdot e^{-k_a t}$ (onde t é o tempo, Atv_0 é a atividade proteolítica inicial, Atv é a atividade proteolítica no tempo t e k_d é a constante de inativação).

Por fim, foi determinada a estabilidade operacional da enzima imobilizada selecionada a partir de sua capacidade de reutilização em termos de retenção de atividade proteolítica e foi analisada ao longo de sucessivos ciclos operacionais de reação com azocaseína.

Todos os ensaios serão realizados em triplicata e a diferença entre as médias foi avaliada por análise de variância (ANOVA) seguida do teste de Tukey ao nível de significância de 5% com auxílio do software Minitab® 19 de Minitab Inc. (Pensilvânia, EUA).

RESULTADOS E DISCUSSÃO

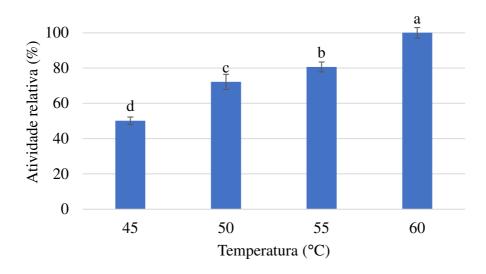

A Tabela 1 apresenta os valores dos parâmetros de imobilização obtidos utilizando os diferentes suportes produzidos. A imobilização da protease Protezyn APP 3000 em quitosana na concentração de 5% (m/v) apresentou os melhores resultados para todos os parâmetros avaliados, apresentando um carregamento de 69,9%, uma eficiência de 35,6% e uma efetividade de 48,3%. Isso está relacionado ao fato de a quitosana apresentar grupos amino e hidroxila em sua superfície, realizando ligação covalente com o glutaraldeído. O alginato, por sua vez, não possui grupos amino em sua superfície, resultando em parâmetros inferiores aos detectados para quitosana. Assim, a protease imobilizada em quitosana (5% m/v) foi utilizada para os estudos posteriores.

Tabela 1. Efeito da composição do suporte na imobilização da enzima Protezyn APP 3000.

Suporte	Carregamento (%)	Eficiência (%)	Efetividade (%)	Atividade relativa (%)
Q5	69.9 ± 0.8 a	$35,6 \pm 2,3$ a	48,3 ± 3,6 °a	100,0 ± 4,7 a
Q2,5	49,3 ± 2,4 °	20,5 ± 2,0 b	44,0 ± 5,7 °a	57,5 ± 4,1 ^b
QA	54,9 ± 0,9 b	11,4 ± 0,9 °	22,0 ± 1,2 ^b	32,2 ± 2,8 °

^{*}Médias (n = 3) ± DP seguidas por letras diferentes diferem entre si ao nível de 5% de significância pelo teste de Tukey. Q5: Quitosana a 5% (m/v); Q2,5: Quitosana a 2,5% (m/v); QA: Quitosana a 2,5% (m/v) misturada com Alginato a 2,5% (m/v).

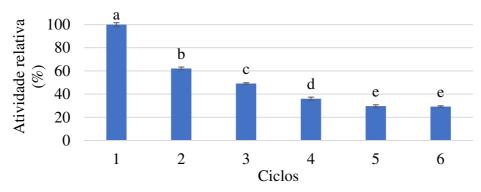
A Figura 1 mostra que a imobilização não afetou a temperatura ótima de atuação da enzima, uma vez que a preparação comercial Protezyn APP 3000 em sua forma livre possui atividade ótima na temperatura de 60°C, conforme informações do fabricante (Prozyn).

Figura 1. Atividade relativa da Protezyn APP 3000 imobilizada em função da temperatura de incubação.

No que concerne à estabilidade da enzima em função da temperatura e do tempo de incubação, os resultados apresentados na Tabela 2 mostram que a atividade relativa da enzima decai com o tempo, seja na forma livre ou imobilizada, tendo um decaimento muito maior na forma livre em ambas as temperaturas. Além disso, pode-se notar que na temperatura de 55°C, a enzima imobilizada teve um decaimento bem menor do que na temperatura de 60°C.

Tabela 2. Atividade relativa da Protezyn APP 3000 livre e imobilizada sob tratamento térmico a 55 °C e 60 °C em função do tempo.

Tempo (min)	Atividade relativa (%)				
	55 °C		60 °C		
	Enzima livre	Enzima imobilizada	Enzima livre	Enzima imobilizada	
0	100,0 ± 0,8 a	100,0 ± 3,5 a	100,0 ± 3,0 a	100,0 ± 3,5 a	
30	$78,4 \pm 2,0$ b	94.4 ± 1.8 ab	82.8 ± 1.2^{a}	$88,6 \pm 4,0$ b	
60	70.3 ± 1.4 °	91.0 ± 2.0 b	56.0 ± 0.6 b	$75,7 \pm 1,9$ °	
90	$61,6 \pm 0,7$ d	83.9 ± 1.7 °	41.1 ± 0.5 bc	$69,2 \pm 2,6$ °	
120	54,6 ± 0,7 °	80.2 ± 1.5 cd	37,4 ± 1,3 °	$60,4 \pm 1,0$ d	
180	$42,1 \pm 2,9$ f	$75,7 \pm 2,6$ d	17,2 ± 1,6 °	$49,3 \pm 2,5$ °	


^{*}Médias $(n = 3) \pm DP$ seguidas por letras diferentes diferem entre si ao nível de 5% de significância pelo teste de Tukey.

A Tabela 3 apresenta os valores de k_d e tempos de meia vida ($t_{1/2}$) obtidos. Nota-se que as constantes de inativação da enzima na forma livre apresentaram valores muito maiores que aqueles detectados para a forma imobilizada, em ambas as temperaturas. Porém, na temperatura de 60°C, os valores foram muito maiores que os observados na temperatura de 55°C, em ambas as situações. Isso dá-se pelo fato de a enzima imobilizada ser menos afetada pelo aumento da temperatura, mantendo a atividade enzimática por mais tempo.

Tabela 3. Constantes da taxa de inativação (k_d) Protezyn APP 3000 em sua forma livre e imobilizada em função da temperatura de incubação.

Temperatura (°C)	Enzima	$k_d (\mathrm{min}^{\text{-}1})$	<i>t</i> _{1/2} (min)	R^2
55	Livre	0,0053	130,78	0,992
	Imobilizada	0,0017	407,73	0,991
60	Livre	0,0101	68,63	0,991
	Imobilizada	0,0042	165,04	0,998

A Figura 3 apresenta a estabilidade da enzima Protezyn PP 3000 imobilizada em quitosana ao ser reutilizada por 6 ciclos sequenciais. A atividade relativa diminuiu ao longo dos ciclos, diferindose estatisticamente (p < 0,05) entre os 4 primeiros ciclos. Essa diminuição pode estar relacionada a danos na estrutura do suporte, reduzindo a atividade enzimática com o passar dos ciclos.

Figura 3. Estabilidade da Protezyn APP 3000 imobilizada em quitosana entre ciclos sucessivos.

CONCLUSÕES

Os resultados obtidos indicaram que foi possível imobilizar uma protease comercial de *Bacillus licheniformis* (Protezyn APP 3000) por ligação covalente em quitosana modificada por glutaraldeído. A enzima apresentou alta capacidade de reutilização, sendo indicada para aplicações em processos contínuos ou batelada alimentada. Assim, pode-se concluir que o processo de imobilização foi promissor, por estabilizar uma enzima que está sendo reportada nesse tipo de estudo pela primeira vez.

BIBLIOGRAFIA

¹SHELDON, R. CLEAs, Combi-CLEAs and 'Smart' Magnetic CLEAs: Biocatalysis in a Bio-Based Economy. **Catalysts**, v. 9, n. 3, p. 261, 2019.

²MOHAMAD, N. R.; MARZUKI, N. H. C.; BUANG, N. A.; HUYOP, F.; WAHAB, R. A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. **Biotechnology & Biotechnological Equipment**, v. 29, n. 2, p. 205–220, 2015.

³GUISAN, J. M. Imobilização de enzimas e células. 2. ed. Totowa: Humana Press Inc., 2006.

⁴RODRIGUES, L. O.; FREITAS, N. M.; BARBOSA, P. S.; AZEVEDO, O. A.; FIORESE, C. H. U.; SILVA-FILHO, G. Produção de biofilme de quitosana, reduzida da quitina, extraída de exoesqueleto de crustáceos: proposta e disponibilização sustentável. **Brazilian Applied Science Review**, v. 4, n. 1, p. 218–239, 2020.

⁵HARTREE, E. F. Determination of protein: A modification of the lowry method that gives a linear photometric response. **Analytical Biochemistry**, v. 48, n. 2, p. 422–427, 1 ago. 1972.

⁶CHARNEY, J.; TOMARELLI, R. M. A colorimetric method for the determination of the proteolytic activity of duodenal juice. **Journal of Biological Chemistry**, v. 170, p. 501–505, 1947.

⁷DE CASTRO, R. J. S.; SATO, H. H. Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. **Industrial Crops and Products**, v. 49, p. 813–821, 1 ago. 2013.