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The Immune Epitope Database (IEDB) is a freely accessible database containing a significant
part of the immune epitope assays described in relevant studies published over the last decades.
Each epitope is classified as linear, discontinuous (possibly in multi-chain) or non-peptidic. In this
work, we analyzed the subset of linear epitopes, including information about the antibody binding
regions, the so-called complementarity-determining regions (CDRs). We found out that only a
small percentage of assays contribute nonredundant linear epitopes with CDR3 chains, summing
up to 485 entries. Furthermore, we explored some properties of these data, concluding that: (1)
human and mouse hosts make up the vast majority of assays; (2) most epitopes range between
5 and 25 amino acids, whereas CDR light and heavy chain expected sizes are around 9–10 and
13–14 amino acids, respectively; (c) amino acid composition is far from uniform, with rare amino
acids such as tryptophan being overrepresented, while more common ones such as lysine appearing
underrepresented. Studies on other epitope-CDR datasets in the literature show similar conclusions.
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I. INTRODUCTION

Recently, increasing numbers of machine learning-
based approaches are being used in attempts to solv-
ing different problems in bioinformatics, including im-
munology problems [1, 5, 8]. A machine learning algo-
rithm is basically a system that reliably improves its
performance at a particular task based on experience
(i.e. data) [9]. Therefore, a key aspect to the success
of these methods is the quality and representativeness
of the data employed by them to recognize patterns
and generate results.

With this in mind, we explored the subset of lin-
ear epitopes from the Immune Epitope Database
(IEDB) [16], in preparatory analysis prior to using
them in machine learning systems.

II. BACKGROUND

The mammalian immune system is vastly complex
and comprises several defense mechanisms against po-
tentially dangerous agents (antigens), which can be
carbohydrates, proteins, and other molecules. The
identification of these antigens usually occurs when
an immune cell receptor protein binds to the anti-
gen ligands, also called epitopes. When epitopes are
proteins, they can be a continuous subsequence from
the antigen’s amino acid sequence, in which case they
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are refered as linear epitopes, or a discontinuous
subsequence.

The first antigen-specific receptor discovered was
the antibody (Ab), a Y-shaped proteic molecule from
the immunoglobulin superfamily synthesized by B-
cells consisting of two identical light (L) chains and
two identical heavy (H) chains. Antibodies, as part of
our adaptative immune system, have highly variable
regions on the top of the Y, called complementarity-
determining regions (CDRs), where the binding
happens [11]. Among these, it is known that CDR3 is
where most conformational variations happen [4].

Since the discovery of these mechanisms, a sig-
nificant number of published studies have sequenced
amino acids both from epitopes and antibodies (and
their CDR3). In 2004, the National Institute of Al-
lergy and Infections Diseases (NIAID) established the
IEDB, with the goal of making all these experimen-
tally determined immune epitopes freely available to
the public [14].

By 2012, more than 95% of the publications in
PubMed [10] were already curated by PhD special-
ists working on IEDB [15]. An overview of the num-
ber of new assays over the years can be seen in Fig-
ure 2. IEDB assay curation is not restricted by
species, which means that any species might be rep-
resented the dataset as a host. In fact, more than a
hundred species (strains) have at least one entry (Fig-
ure 1).
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Figure 1: Most frequent host species in IEDB B-cell
assays. The first 10 species had their strains

grouped, while the others had not.

III. METHODOLOGY

In this analysis, we used the data avalaible in IEDB1

on August 15, 2021. The complete dataset for B-
cell experiments, which includes assay information,
was obtained from the “database export” option in
“more IEDB” menu. To retrieve linear epitope se-
quence data, we performed a search on the homepage
by selecting linear epitopes from B-cell assays with
positive outcome. Positivity is an important property,
since negative results associates epitopes and CDRs
that probably do not bind. An important distinction
to be made is that a positive assays does not imply all
amino acids in the sequence are interacting residues.
As mentioned by Vita et al. [15], IEDB epitope se-
quences in many cases are not minimal, but match
the exact sequences that were actually tested in the
assays.

In a data review, we identified that linear epitopes
retrieved by IEDB also contain discontinuous and
even non-peptidic epitopes, making up about 3.1%
and 4.0%, respectively, of the 1040 non-redundant
epitopes. Therefore, we filtered downloaded linear
epitopes even further, removing these cases. In the
process, we removed blank spaces from the beginning
and end of epitope sequences, and selected those con-
taining only capital letters, using the regular expres-
sion ^[A-Z]$. This excludes discontinuous epitopes,
which are encoded as sequences of comma-separated
codes composed of amino acids and their positions
(e.g. W126), as well as non-peptidic sequences, since
these usually contain lowercase letters2 and numbers

1 https://www.iedb.org
2 Since we are applying this filter only on data labeled as lin-

ear epitope, if there is any non-peptidic epitope described
with uppercase letters only, there is no other way of knowing
whether it is mislabeled other than reviewing its publication
paper.

(e.g. 2,4-dinitrophenyl group). Due to modified epi-
topes being represented using a plus sign (+) in their
sequences, they are also correctly disconsidered with
the aforementioned approach.

Among entries encoded as discontinuous, we also
found fully linear sequences. However, these had one
or two amino acids only, and were not included in the
linear subset.

On comparative analysis with discontinuous epi-
topes, we use a similar filtering process on all B-cell
assay epitopes, but searching for sequences that match
the amino-acid-and-position format, using the regular
expression ^(?:[A-Z][0-9]+,\s*)*[A-Z][0-9]+$.

In order to analyze amino acid composition, we fol-
lowed Ofran et al. [12]. For each analyzed sequence
type, we computed the amino acid distribution with
respect to each sequence, and then averaged the re-
sults. The natural logarithm was applied to the ra-
tio of the averaged values over Swiss-Prot amino acid
frequency in order to obtain the representativeness.
Swiss-Prot [2] amino acid statistics released3 on June
21, 2021 were used for this normalization. Aiming
at assessing the effect of sequence frequency in amino
acid distribution, we evaluated both redundant and
non-redundant sequences.

To process the data, we used Python 3.8.10,
pandas [13] and matplotlib [3]. All scripts used to
generate results shown herein are available at https:
//github.com/henriquesimoes/xxix-pibic.

IV. RESULTS

After filtering the data, we found 1128 entries for
linear epitopes (560 of them unique), 22439 entries for
discontinuous epitopes (3519 unique when not consid-
ering amino acid relative positions) and 613 triples
(linear epitope, CDRL3, CDRH3), with 485 of them
being unique. Figure 5 shows amino acid representa-
tiveness for epitopes and CDR3 with respect to pro-
teins in general. The host species and sequence length
distribution from assays of linear epitope with binding
CDR3 are shown respectively in Figures 3 and 4.

V. DISCUSSION

Despite having a significant amount of data from
the literature, and in a growing rate, IEDB non-
redudant linear epitope data with information of bind-
ing antibodies is still scarce, corresponding to around
0.043% of all 1,125,362 assays. This will likely bring
challenges to machine learning-based approaches, such
as generalization issues due to low representativeness
of possible binding patterns.

3 https://web.expasy.org/docs/relnotes/relstat.html
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Figure 2: Number of new curated assays based on the epitope type included in IEDB over the years until
August 15, 2021. A more precise description of each epitope type can be found in the IEDB Curation Manual,

available at http://curationwiki.iedb.org/wiki/index.php/Curation_Manual2.0#Epitope_Objects.

Figure 3: Host species from assays of linear epitope
with associated CDR3 chains. Same species from

Figure 1 have been grouped here.

Figure 4: Length distribution for non-redundant
linear epitopes and their associated antibody CDR3.

Furthermore, as it can be noticed from Figure 3,
in this subset, there are remarkably more antibodies
from humans and mice. This is expected, since clinical
trials are usually conducted with these species. How-
ever, it also limits capturing possible patterns that
may occur in other organisms and could be impor-
tant, for instance, to unravel which mammalian anti-
body may bind to a given linear epitope.

Similarly to Ofran et al. [12], we found that CDR3
amino acid representativeness varies (Figure 5b), with
lysine (K) and glutamate (E) underrepresented while
tryptophan (W) and tyrosine (Y) are overrepresented.

However, glutamine (Q) has opposite representative-
ness in our data for light and heavy chains, while
both are underrepresented in their work. This sug-
gests that the selected antibody sequences have indeed
these uncovered properties. Therefore, if an algorithm
uses this subset, it might be able to correctly capture
propensity of amino acids that have been also identi-
fied by Kringelum et al. [6].

Another interesting thing to note with respect to
amino acid preference is that epitopes seem distin-
guishable from general proteins (Figure 5a). Nev-
ertheless, Swiss-Prot naturally includes non-surface
residues, which might introduce a bias, as discussed
by Kringelum et al. [6]. To remove this bias, they
evaluated sequence distribution by sampling from 12
bins based on surface exposure. However, this char-
acteristic is relative to each sequence and is, as such,
not available in Swiss-Prot statistics. Consequently,
we did not take this into account.

Finally, CDR3 light and heavy chains have different
expected length, with CDRL3 of 9–10 amino acids and
CDRH3 13–14 being more prevalent. This is similar
to properties identified by Kunik and Ofran [7] with
respect to length distribution diversity and chain rel-
ative sizes.

VI. CONCLUSION

We explored the Immune Epitope Database and
found 485 non-redundant sequences of linear epitopes
and associated antibody CDR3. Still, they are mainly
from two species: Mus musculus and Homo sapiens.
This may be a bias to take into account when design-
ing new systems. Moreover, CDR3 sequence proper-
ties seem to correspond to ones previously found, in-
cluding sequence length and amino acid composition.
This suggests that machine learning systems trained
with the analyzed subset are likely to face important
challenges, but may capture intrinsic properties from
antibody complementarity-determining regions.

http://curationwiki.iedb.org/wiki/index.php/Curation_Manual2.0#Epitope_Objects
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(a)

(b)

Figure 5: Amino acid representativeness based on Swiss-Prot amino acid distribution for (a) epitopes and (b)
epitope-CDRH3-CDRL3 triples. Negative values mean underrepresentation and positive values mean

overrepresentation with respect to the propensity in proteins in general. Uniqueness has been evaluated
isolated for each epitope type (a), while a non-redundant entry for receptor triples (b) took into account

epitope, CDRL3 and CDRH3 together.
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