

SÍNTESE DE UM NOVO FOSFOLIPÍDIO IMOBILIZADO EM SUPERFÍCIE SÓLIDA COMO FERRAMENTA NA ELUCIDAÇÃO DO MECANISMO DE AÇÃO DE ALQUILFOSFOLIPÍDIOS EM CÉLULAS TUMORAIS

Palavras-Chave: [Trifosfato de citidina: fosfocolina citidiltransferase], [Apoptose], [Câncer]

Autores/as:

João Gabriel Mendes Rocha (aluno) [UNICAMP]

Prof. Dr. Daniel Fabio Kawano (orientador) [UNICAMP]

MSc. Xisto Antônio de Oliveira Neto (co-orientador) [UNICAMP]

INTRODUÇÃO:

A perda do mecanismo de apoptose em células neoplásicas representa um ponto crucial na patogenia do câncer, pois possibilita a sobrevivência prolongada destas células, período no qual ocorre o acúmulo de alterações genéticas que desregulam a proliferação e interferem com o processo de diferenciação celular. Desse modo, estratégias terapêuticas que buscam restaurar a apoptose em células tumorais representam uma oportunidade de promover a morte seletiva de células neoplásicas, sem comprometer células saudáveis. 2

Alvos terapêuticos precisam ser estudados a fundo para que novas estratégias de restauração apoptótica possam ser compreendidas, a enzima trifosfato de citidina: fosfocolina citidiltransferase (CCT) possui relação direta com alguns tipos de câncer e é considerado um potencial alvo para seu tratamento, apesar de ainda ser necessário um maior compreendimento de seu papel nos processos biológicos desta patologia.

A CCT (EC 2.7.7.15) é a enzima responsável pela conversão de fosfocolina em CDP-colina, através da transferência de um grupo citidil do CTP para a fosfocolina esta enzima catalisa a etapa limitante da via da CDP-colina,³ via fundamental na síntese do principal fosfolipídio que compõe a membrana de células nucleadas, a fosfatidilcolina. O aumento da divisão celular é frequentemente acompanhado de um aumento na atividade da CCT,⁴ porém esta enzima não é comumente associada a um oncogene, mas sim à mitogênese.⁵ É importante ressaltar que a CCT possui duas isoformas, a CCTα e CCTβ, nos seres humanos a CCTα é codificada pelo gene PCYT1A e a CCTβ codificada pelo gene PCYT1B,⁶ sendo a isoforma dominante CCTα essencial para viabilidade celular e expressa em quantidades muito maiores, enquanto a CCTβ (apesar de possuir 3 isoformas) tem sua distribuição tecidual muito restrita (em tecidos específicos e no estado embrionário.⁵ O gene PCYT1A (antes Cptct) se localiza no cromossomo 3 e o gene PCYT1B no cromossomo.⁵

Em células tumorais de cólon, a quantidade total de fosfolipídios pode ser de 30-40% superior à de células não tumorais, sendo a fosfatidilcolina um dos fosfolipídios mais abundantes⁹. O aumento da concentração da CCT pode levar à um aumento da síntese de fosfatidilcolina em células cancerígenas, permitindo uma rápida proliferação celular e crescimento tumoral.¹⁰ Dessa forma, a CCT se torna um ponto crucial na patologia de determinados fenótipos cancerígenos, o que também a elenca como um possível alvo terapêutico.

METODOLOGIA:

Este projeto foi realizado durante a pandemia de COVID-19, devido a suspenção das atividades presenciais, o projeto foi adaptado e o aluno optou por realizar uma revisão narrativa da literatura. A revisão tem caráter amplo e buscou concentrar o conhecimento disponível sobre o papel da enzima CCT no contexto do câncer, mostrando-a como um possível alvo tumoral a ser explorado no desenvolvimento racional de novos medicamentos e facilitando pesquisas futuras nesse sentido. Adicionalmente, os tipos de cânceres que apresentaram aumento na expressão de CCT foram compilados para direcionar futuros estudos em que a enzima seja utilizada como alvo terapêutico, permitindo uma investigação direcionada dos possíveis inibidores e aumentando a chance de sucesso. Além disso, inibidores e ativadores da enzima CCT também foram agrupados, a observação de possíveis padrões farmacofóricos podem favorecer o desenvolvimento de moléculas capazes de inibir a enzima, causando a supressão da síntese de fosfatidilcolina e, consequentemente, impedindo a progressão do ciclo celular e desencadeando a apoptose.

Foram utilizadas as seguintes bases de dados para seleção dos artigos científicos: PUBMED (MEDLINE), Web of Science e SCOPUS.

RESULTADOS E DISCUSSÃO:

É fundamental compreender quais os elementos metabólicos afetam a atividade da CCT, a regulação da CCTα é complexa e pode envolver diversas vias de sinalização intracelular, entender estes mecanismos favorece a criação de análogos que conferem uma ação inibitória contra a CCT. Ao diminuir sua atividade, tem-se uma redução da proliferação celular, que se opõe aos processos tumorais, além disso, moléculas podem ser desenvolvidas para atuar nas vias em que a CCT está presente, agindo de maneira sinergística e levando também a interrupção da via da CDP-colina.

Uma dessas vias é a via do TNF-α, citocina capaz de ativar a fosfolipase A2 citosólica (cPLA₂), a proteína cinase C-α (PKC), a p38 mitogen-activated protein kinase (p38 MAPK), 11 a esfingomielinase e a fosfolipase C/D, através de uma cascata de ativação ocorre a inibição da CCT de maneira indireta, por ação dos metabólitos gerados. A cPLA2, também ativada pela PKC e p38 MAPK, realiza a hidrólise do sn-2-arachidonoyl PC em lisofosfatidilcolina (lysoPC) e ácido araquidônico, sendo a lysoPC responsável por induzir a translocação de CCT para o seu estado inativo nuclear, enquanto o ácido araquidônico, através da 5-lipoxigenase, gera leucotrienos, que por sua vez estimulam a produção de TNF-α, tornando a via autoestimulável. Além disso, os leucotrienos também são capazes de ativar cPLA2 devido a elevação dos níveis intracelulares de Ca²⁺, ¹¹ os níveis elevados de cálcio decorrentes da resposta a sinais inflamatórios são responsáveis pela translocação da CCTα para sua forma inativa, há associação da CCTα com a 14-3-3ζ, uma chaperona molecular, que acompanha a CCT para a região nuclear de maneira dependente de Ca²⁺, tal mecanismo pode ser uma maneira de manter a homeostase celular. ¹² O TNF-α também é capaz de realizar a degradação proteolítica da CCTα¹³ através da aceleração do turnover proteico, também é capaz de ativar a esfingomielinase, estimulando a hidrólise da esfingomielina, formando ceramida e esfingosina. A ceramida é um fator pró apoptótico, ativadora de PKC e p38 MAPK,11 além de possivelmente ser uma inibidora direta da CCTα;¹⁴ a esfingosina também pode atuar com um inibidor reversível competitivo da CCT.

O DAG pode ser considerado um segundo mensageiro lipídico, atuando na sinalização de translocação da CCT para membranas, ou um ativador direto, atuando em vias de sinalização que levam a desfosforilação da CCT,^{15,16} bem como atuando em vias indiretas com um ativador da esfingomielinase. A estimulação da CCTα mediada por lipídeos não é restrita ao DAG, ácidos graxos poli-insaturados (PUFA) e ácidos graxos monoinsaturados (MUFA) também aumentam a atividade enzimática da CCT, acarretando em uma maior síntese de fosfatidilcolina.¹⁷

Por último, a via da óxido nítrico sintase (NOS) também cumpre seu papel na inibição da CCT, com o aumento intracelular do óxido nítrico, ocorre a translocação da subunidade nuclear

factor-kB (NF-κB) p65, responsável pela diminuição da expressão de CCTα em células A549, sendo um regulador negativo dessa enzima.¹⁸

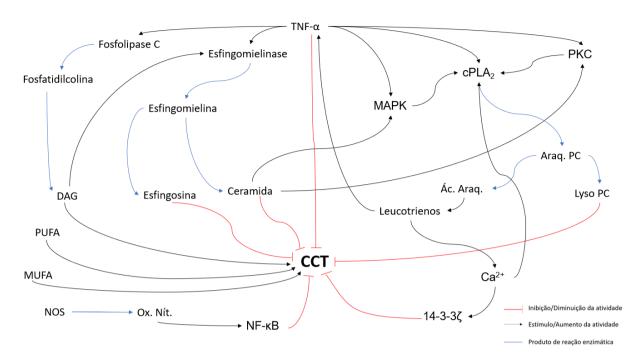


Figura 1: Rota metabólica mostrando algumas vias de sinalização responsáveis pela inibição ou estímulo da CCT.

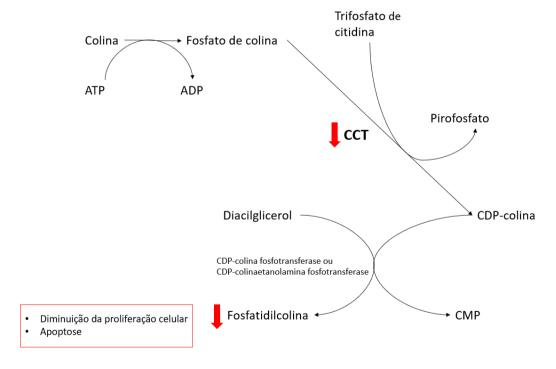


Figura 2: Via da CDP-colina. Com a diminuição da expressão da CCT, há a diminuição da concentração de fosfatidilcolina, levando a diminuição da proliferação celular e apoptose.

Em alguns tecidos tumorais, há o acúmulo de fosfatidilcolina durante a malignização, o aumento da atividade da CCT coincide com esse acúmulo. Em tecidos hepáticos de ratos, quando ocorre a hiperplasia, há também um aumento das concentrações de CCT, neste caso, ocorreu apoptose das células tumorais quando uma redução acentuada da CCT foi observada.⁹

A hiper expressão da CCT foi correlacionada com o tamanho do tumor, metástase nos linfonodos e o nível de malignização do câncer de células escamosas da laringe. 19 O tamanho do

tumor também foi correlacionado com o gene superexpresso da CCT (PCYT1A) no linfoma difuso de grandes células B, característica que garante a essas células uma resistência a necroptose.²⁰

A relação de cânceres com uma alta expressão ou atividade da CCT está descrita na tabela

Tipo do Câncer	Referência	Ano de publicação
Câncer colorretal	Dueck et. al.	1996
Câncer hepático de ratos	Tessitore et. al.	1999
Câncer hepático	Kuang et. al.	2011
Carcinoma escamoso de pescoço e câncer de pulmão de células não pequenas	Vaezi et. al.	2014
Linfoma difuso de grandes células B	Xiong et. al.	2017
Câncer de bexiga	Hemdan et. al.	2018
Câncer de células escamosas da laringe	Yang et. al.	2019

Tabela 1: Relação de cânceres que apresentam a hiper expressão da CCT.

CONCLUSÕES:

1.

A enzima CCT está intimamente relacionada aos processos que regem o câncer, sendo sua participação fundamental para o funcionamento de vias relacionadas a resistência à apoptose bem como de aprofundamento da malignação. Sua centralidade em vias importantes no contexto do câncer a tornam um alvo com grande potencial terapêutico, particularmente em linhagens tumorais que possuem uma atividade acentuada da enzima. A análise das bases moleculares por trás do envolvimento da CCT no contexto do câncer não apenas reforça a promessa que ela apresenta, mas também abre espaço para o planejamento de co-tratamentos com outras moléculas que atuem na via da CDP-colina ou em vias sinérgicas. Através dessa revisão esperamos favorecer o planejamento de projetos que explorem a CCT como alvo oncológico de maneira ótima, aumentando as chances de se obter um inibidor eficiente e, consequentemente, uma terapia eficaz contra o câncer.

BIBLIOGRAFIA

- 1- REED, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell, v. 3, n. 1, p. 17-22, 2003.
- 2- MASHIMA, T; TSURUO, T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resistance Updates, v. 8, p. 339-343, 2005.
- 3- FELDMAN, D. A.; ROUNSIFER, M. E.; CHARLES, L.; WEINHOLD, P. A. CTP: phosphocholine cytidylyltransferase in rat lung: relationship between cytosolic and membrane forms. Biochimic et Biophysics Acta, v. 1045, p. 49-57, 1990.
- 4- TESSITORE, L.; CUI, Z.; VANCE, D. E. Transient inactivation of phosphatidylethanolamine N-methyltransferase-2 and activation of cytidine triphosphate: phosphocholine cytidylyltransferase during non-neoplastic liver growth. Biochem. J, v. 322, p. 151-154, 1997.

- 5- TESSITORE, L.; DIANZANI, I.; CUI, Z.; VANCE, D. E. Diminished expression of phosphatidylethanolamine N-methyltransferase 2 during hepatocarcinogenesis. Biochem. J, v. 337, p. 23-27, 1999.
- 6- LYKIDIS, A. Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Progress in Lipid Research, v. 46, p. 171-199, 2007.
- 7- ARSENAULT, D. J.; YOO, B. H.; ROSEN, K. v.; RIDGWAY, N. D. ras-induced up-regulation of CTP:phosphocholine cytidylyltransferase α contributes to malignant transformation of intestinal epithelial cells. Journal of Biological Chemistry, v. 288, n. 1, p. 633–643, 2013.
- 8- KARIM, M.; JACKSON, P.; JACKOWSKI, S. Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase β isoform. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, v. 1633, n. 1, p. 1–12, 2003.
- 9- DUECK, D.-A.; CHAN, M.; TRAN, K.; WONG, J. T.; JAY, F. T.; LITTMAN, C.; STIMPSON, R.; CHOY, P. C. The modulation of choline phosphoglyceride metabolism in human colon cancer. Molecular and Cellular Biochemistry, p. 162, p. 97-103, 1996.
- 10- GLUNDE, K.; BHUJWALLA, Z. M.; RONEN, S. M. Choline metabolism in malignant transformation. Nature Reviews Cancer, v.11, p. 835-848, 2011.
- 11- VIVEKANANDA, J.; SMITH, D.; RJ, K. CTP:phosphocholine cytidylyltransferase inhibition by ceramide via PKC-, p38 MAPK, cPLA 2, and 5-lipoxygenase. Am J Physiol Lung Cell Mol Physiol, v. 281, p. 98-107, 2001.
- 12- AGASSANDIAN, M.; CHEN, B. B.; SCHUSTER, C. C.; HOUTMAN, J. C. D.; MALLAMPALLI, R. K. 14-3-3 ζ escorts CCT α for calcium-activated nuclear import in lung epithelia. The FASEB Journal, v. 24, n. 4, p. 1271–1283, 2010.
- 13- MALLAMPALLI, R. K.; RYAN, A. J.; SALOME, R. G.; JACKOWSKI, S. Tumor Necrosis Factor-Inhibits Expression of CTP:Phosphocholine Cytidylyltransferase*, Journal of biological chemistry, v. 275, p. 9699-9708, 2000.
- 14- BOGIN, L.; PAPA, M. Z.; POLAK-CHARCON, S.; DEGANI, H. TNF-induced modulations of phospholipid metabolism in human breast cancer cells, Biochimica et Biophysica Acta (BBA), v. 1392, p. 217-232, 1998.
- 15- PELECH, S.; VANCE, D. E. Signal transduction via phosphatidylcholine cycles. Trends in Biochemical Science, v. 14, p.28-30, 1989.
- 16- NG, M.; KITOS, T.; CORNELL, R. B. Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, v. 1686, n. 1–2, p. 85–99, 2004.
- 17- FAGONE, P.; SRIBURI, R.; WARD-CHAPMAN, C.; FRANK, M.; WANG, J.; GUNTER, C.; BREWER, J. W.; JACKOWSKI, S. Phospholipid biosynthesis program underlying membrane expansion during Blymphocyte differentiation. Journal of Biological Chemistry, v. 282, n. 10, p. 7591–7605, 2007.
- 18- LI, L.; SHEN, L.; SHE, H.; YUE, S.; FENG, D.; LUO, Z. Nitric oxide-induced activation of NF-κB-mediated NMDA-induced CTP:phosphocholine cytidylyltransferase alpha expression inhibition in A549 cells. Cell Biology and Toxicology, v. 27, n. 1, p. 41–47, 2011.
- 19- YANG, J.; ZHANG, Z.; ZHAO, Y.; CHENG, J.; ZHAO, C.; WANG, Z. CCT α is a novel biomarker for diagnosis of laryngeal squamous cell cancer. Scientific Reports, v. 9, n. 1, 2019.
- 20- XIONG, J.; WANG, L.; FEI, X. C.; JIANG, X. F.; ZHENG, Z.; ZHAO, Y.; WANG, C. F.; LI, B.; CHEN, S. J.; JANIN, A.; GALE, R. P.; ZHAO, W. L. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer Journal, v. 7, n. 7, 2017.