

UM ESTUDO SOBRE A APLICAÇÃO DE SIMULAÇÃO COMPUTACIONAL UTILIZANDO OPENFOAM® PARA SISTEMA DE VENTILAÇÃO NATURAL POR CHAMINÉ SOLAR

Palavras-Chave: Chaminé solar, Simulação computacional, OpenFOAM.

Autores(as): Kaelaine Carvalho da Silva, CMBJL – UFOB Prof. Dr. André Issao Sato (orientador), CMBJL - UFOB

INTRODUÇÃO:

A chaminé solar tem sido amplamente estudada na literatura, tratando-se de um sistema de ventilação passiva natural que utiliza energia solar térmica para aquecer o ar dentro da chaminé, gerando uma maior circulação de ar no ambiente interno. Deste modo, permite a remoção do ar quente e a diluição de contaminantes, fornecendo ar fresco do ambiente externo [1]. No entanto, a eficiência da chaminé solar depende de vários parâmetros, como comprimento, largura, profundidade e ângulo de inclinação [2].

Neste sentido, o presente estudo utiliza a simulação computacional para analisar o comportamento fluido térmico de um modelo de chaminé solar, considerando condições ambientais conhecidas. Com isso, o software OpenFOAM, amplamente utilizado em ambientes acadêmicos e industriais, foi escolhido para realizar as simulações usando o método de volumes finitos, permitindo personalizações e modificações conforme necessário. Assim, o objetivo é demonstrar a aplicabilidade da simulação da chaminé solar usando o OpenFOAM e pretende-se destacar as etapas necessárias de construção do modelo computacional e posteriormente apresentar resultados pertinentes [3][4].

DOMÍNIO COMPUTACIONAL:

O estudo iniciou-se selecionando uma geometria de chaminé solar validada por Médson [5] (Figura 1). Tal geometria foi construída diretamente no OpenFOAM, por meio da ferramenta *blockMesh*, sendo a mesma também utilizada para a geração da malha computacional e, neste caso, foi editado o arquivo denominado de *blockMeshDict*, em que o esboço é disponibilizado no site oficial do OpenFOAM.

Deste modo, a geometria foi dividida em cinco blocos, para que assim fosse possível separá-las adequadamente e posteriormente aplicar as suas condições de contorno referentes (ver Figura 1). Após a divisão do domínio em blocos, a definição dos vértices feita no arquivo do *blockMeshDict* seguiu com

a indicação das coordenadas geométricas a partir do modelo escolhido, como representado também na

Figura 1: Dimensões, em m, da chaminé solar e da divisão dos blocos, com indicação, por cor, da nomeação de cada face e a numeração da divisão de blocos – fonte: Autora, 2023.

Figura 2 em que são definidos os vértices de 0 a 3.

```
scale 0.001;
vertices
(
(0 0 0) //0
(300 0 0) //1
(300 30 0) //2
(0 30 0) //3
```

Figura 2: Exemplo da numeração dos vértices seguindo as coordenadas em xyz - fonte: Autora, 2023.

Com a definição dos vértices, seguiu-se a definição das faces do domínio que, neste caso, apresentam ao menos 4 vértices para cada face e os mesmos foram apresentados em uma sequência horária para que o vetor normal da face esteja sempre apontado para fora do domínio. A Tabela 1 apresenta as faces com os respectivos vértices e os refinamentos para geração da malha a serem utilizados.

Bloco	Refinamento	Refinamento	Refinamento
	em x	em y	em z
	170	1	25
	30	1	25
	170	1	197
IV	30	1	197
V	30	1	86

Tabela 1: Identificação adotada para cada bloco e seu respectivo refinamento em xyz - fonte: Autora, 2023.

Para cada face construída, definiu-se um nome que representaria a superfície a ser aplicada

alguma condição de contorno pertinente à simulação, como na Figura 3. O OpenFOAM apresenta uma série de opções para a definição do tipo de superfície de contorno (OPENCFD, 2023), sendo utilizado para a simulação o *patch* que apresenta características genéricas para condições de contorno, *wall* que consiste na condição de contorno de parede impermeável e *symmetryPlane* que consiste na superfície de simetria geométrica e física.

Após as definições prévias, a malha computacional foi construída por meio do comando *blockMesh*, executado no terminal do OpenFOAM e sendo este instalado no Ubuntu que rodava no WSL 2 (uma máquina virtual para o sistema operacional do Linux e instalado no Windows 11). A malha

[•		
Faces	Identificação dos	Tipo	
	vértices da face	140	
inlet	(4 5 11 10)	patch	
outlet	(18 19 20 21)	patch	
pv	(15 12 18 21)	wall	
floor	(1 0 3 2)	wall	
Jioor	(4 1 2 5)		
bootom	(13 14 20 19)	wall	
	(3 0 6 9)		
wall	(6 12 15)	wall	
	(10 11 17 16)		
roof	(14 13 16 17)	wall	
	(0 1 7 6)		
	(1 4 10 7)	symmetryPlane	
sym1	(6 7 13 12)		
	(7 10 16 13)		
	(12 13 19 20)		
	(2 3 9 8)		
	(5 2 8 11)		
sym2	(8 9 15 14)	symmetryPlane	
	(11 8 14 17)		
	(14 15 21 20)		

Figura 3: Tabela inserida como imagem -Nomeação das faces e sua respectiva identificação pelos vértices – fonte: Autora, 2023. produzida pode ser visualizada na Figura 4, sendo apresentado o domínio computacional a ser simulado e o detalhamento da malha na proximidade da entrada da chaminé. Um total de 46980 elementos compôs o domínio final da malha.

As condições de contorno estabelecidas para o domínio se dividiram em condições fluidodinâmicas de velocidade e pressão e condições térmicas de temperatura. O regime de operação da chaminé foi considerado como permanente e o problema térmico foi estabelecido como de temperatura conhecida.

Para as superfícies denominadas *floor, bottom* e *roof,* a condição de não deslizamento (no OpenFOAM, *noSlip*) foi imposta e, bem como, a condição de superfície adiabática (*zeroGradient*), desprezando assim a perda de calor para o meio externo. A superfície *inlet,* que representa a entrada do domínio, recebeu a condição de

Figura 4: Imagem da malha refinada, com ampliação, visualizada pelo ParaView. - fonte: Autora, 2023.

abertura para o ambiente externo com a imposição de uma pressão atmosférica de 100 kPa e a temperatura do fluido que adentra o domínio foi estabelecido como 302,15 K. Condições semelhantes foram aplicadas na *outlet*, que representa a saída do domínio. Na superfície *pv*, que representaria uma superfície aquecida da chaminé e receberia a radiação solar, foi imposta a condição de não deslizamento e a de temperatura conhecida e igual a 400 K.

A Figura 5 apresenta a denominação das condições de contorno no OpenFOAM e para cada superfície estabelecida previamente. O modelo foi considerado como em escoamento turbulento, pois ainda que as velocidades a serem desenvolvidas fossem baixas, o escoamento provocado pela convecção natural resultava em Rayleigh altos o suficiente para a turbulência. No caso, o modelo de k- Epsilon foi estabelecido para a modelagem de turbulência, com constantes estabelecidas por Launder e Sharma (1974) [6].

Faces	p_rgh	Temperatura (K)	U	
inlet	totalPressure	fixedValue	pressureInletVelocity uniform	
	uniform 100000	uniform 302,15	(0 0 0)	
outlet		inletOutlet		
	totalPressure	inletValue	pressureInletOutletVelocity	
	uniform 100000	uniform 302.15	uniform (0 0 0)	
		uniform 302.15		
pv	fixedFluxPressure	fixedValue	noSlin	
	uniform 100000	uniform 400,0	nosip	
floor	fixedFluxPressure	zeroGradient	noSlin	
	uniform 100000	zeroGradient noShp		
bootom	fixedFluxPressure	zeroGradient	noSlip	
	uniform 100000			
wall	fixedFluxPressure	zeroGradient	noSlip	
	uniform 100000	ZeroOradient		
roof	fixedFluxPressure	zeroGradient	noSlip	
	uniform 100000	ZeroOraulent		
sym1	symmetryPlane	symmetryPlane	symmetryPlane	
sym2	symmetryPlane	symmetryPlane	symmetryPlane	

As propriedades do fluido de trabalho,

Figura 5: Condições de contornado para respectivas faces- fonte: Autora, 2023.

que seria o ar, foram editadas no arquivo denominado *thermiphysicalProperties*. O solucionador *buoyantSimpleFoam* foi utilizado para a simulação, o mesmo é definido como um "solucionador de

estado estacionário para fluxo de fluido turbulento e ascendente de fluidos compressíveis, incluindo radiação que se trata de um resolvedor de estado estacionário para fluxo de fluido flutuante incluindo radiação ". Foram realizadas 5000 iterações e com passos de 0,5, visto que o OpenFOAM trabalha com um estado de falso transiente para as simulações em regime permanente.

Após a simulação, foi realizado o pós-processamento e em seguida a verificação da convergência foi avaliada pela análise gráfica dos resíduos quanto ao problema térmico e fluidodinâmico.

RESULTADOS:

O resíduo da simulação pode ser observado na Figura 6, nota-se que a análise residual da variável prgh apresentou um valor de 0,01 Pa, sendo que o valor no domínio variava de 90 kPa a 100 kPa, indicando convergência do resultado. Ademais, em relação a h é atingiu indicando que uma boa convergência ao refinar a malha, já que está diminuindo até atingir a estabilidade.

Conforme a Figura 7, ficou visível

que na placa a temperatura é de 400 K, já que a placa fotovoltaica teve temperatura definida com valor fixo e continua apresentando a mesma temperatura, enquanto abaixo dela houve um aumento de temperatura entre 320 k e 340 k. O que ocasionaria na redução da densidade das partículas presentes na chaminé solar.

Na Figura 8 a parte superior da geometria, principalmente na chaminé, foi a que apresentou diferencas significativas, logo que, enquanto a imagem a esquerda, 100 ° iteração, apresenta no máximo 0,4 m/s, a imagem referente à iteração 5000, a direita, chega a ter alguns locais com 0,63 m/s e fica

Figura 7: Imagens geradas pelo ParaView referentes a mudança da temperatura na 100 ° e na 5000 ° iteração - fonte: Autora, 2023.

visível um aumento de fluxo, com mais intensidade próximo a placa. Ademais, a Figura 8 também demonstra as linhas de fluxo e o escoamento do fluido ao longo da chaminé solar.

Iteração: 100 Iteração: 5000 Figura 8: Imagens geradas pelo ParaView referentes as linhas de fluxo na 100 ° e na 5000 ° iteração – fonte: Autora, 2023.

CONCLUSÕES:

Os Resultados encontrados mostraram o comportamento do fluido com os parâmetros escolhidos, evidenciando a viabilidade do uso da simulação com o OpenFOAM em casos com chaminés solares acopladas a placas fotovoltaicas. Deste modo, facilmente possibilidade de inserção de uma placa fotovoltaica na parte superior da chaminé solar permitiria o escoamento passivo no ambiente, ao mesmo tempo que proporcionaria arrefecimento da mesma.

AGRADECIMENTOS:

A autora agradece o apoio da Universidade Federal do Oeste da Bahia.

BIBLIOGRAFIA

[1] R. Bassiouny, NSA Koura **Um estudo analítico e numérico do uso de chaminés solares para ventilação natural de ambientes,** Energy Build. 40 (2008) 865-873.

[2] Yonggang Lei, Yuwen Zhang, Fei Wang, Xun Wang, **Aprimoramento da ventilação natural de uma nova chaminé solar de telhado com placa absorvedora perfurada para a conservação de energia do edifício**. Engenharia Térmica Aplicada, Volume 107, 2016.

[3] Chen, G., Xiong, Q., Morris, PJ, Paterson, EG, Sergeev, A., & Wang, Y.-C. (2019). **OpenFOAM para Dinâmica de Fluidos Computacional**.

[4] ESPUMA ABERTA. **OpenFOAM – A caixa de ferramentas CFD de código aberto**. Disponível em https://www.openfoam.com/.

[5] Santos, Médson & Issao Sato, André & Souza, Anderson & Júnior, Luiz. (2020). ANÁLISE TERMODINÂMICA DE UMA CHAMINÉ SOLAR APLICADA A BOM JESUS DA LAPA – BA. Brazilian Journal of Development. 6. 96093-96108. 10.34117/bjdv6n12-193.

[6] B. E. Launder and B. I. Sharma Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, 1974, 1, pp. 131-138.