

RESISTÊNCIA MECÂNICA RESIDUAL DO CONCRETO PÓS AQUECIMENTO, UTILIZANDO ENSAIOS DE ULTRASSOM

Palavras-Chave: Concreto, altas temperaturas, ultrassom, agregado graúdo.

Autores:

LIVIA MARIA NUNES MOREIRA LOPES, FECFAU/UNICAMP
Prof^a. Dr^a. GISLEIVA CRISTINA DOS SANTOS FERREIRA (orientadora), FT/FECFAU/UNICAMP
THIAGO DROZDOWSKI PRIOSTA, FECFAU/UNICAMP
MARCELA BARROS DE SOUZA SOLLERO, FECFAU/UNICAMP
Prof. Dr. ARMANDO LOPES MORENO JR., FECFAU/UNICAMP

INTRODUÇÃO:

Historicamente, o concreto tem se destacado por sua notável capacidade de resistência ao fogo, atribuída a combinação entre cimento e agregados, resultando em um material essencialmente inerte e com baixa condutividade térmica, dificultando a penetração do calor pela estrutura (KODUR, 2014). Entretanto, a exposição do concreto a temperaturas elevadas por longos períodos, como em situações de incêndio, resulta em uma gama de efeitos adversos, englobando mudanças físico-químicas significativas que causam alterações micro e macroestruturais. Essas modificações resultam em impactos negativos nas propriedades mecânicas do material, com redução progressiva de sua capacidade estrutural (ARIOZ, 2007; DIAS et al., 2020).

Da análise das características mais influentes no comportamento do concreto aquecido encontram-se as propriedades mecânicas residuais e a incompatibilidade térmica, resultante da interação entre o tipo de agregado graúdo e o cimento utilizado na mistura (MA et al., 2015; SOLLERO, 2019; WONG; POON; AZHAR, [s.d.]). Assim, surge a necessidade de estudos que relacionem a classe de resistência do concreto com a redução de propriedades mecânicas pós aquecimento e principalmente aos tipos de agregado graúdo. Mas a determinação desses parâmetros utilizando apenas ensaios destrutivos envolvem alto custo e período mais longo, o que em situações acidentais, por exemplo, incêndios, não é possível aguardar. Destaca-se, neste contexto, a utilização de ensaios não destrutivos, em particular os ensaios de ultrassom, apresentado como alternativa eficiente para o estudo das propriedades residuais do concreto, com maior rapidez e representatividade de toda a estrutura avaliada. Através da velocidade do pulso ultrassônico (VPU), é possível estimar a resistência mecânica residual do concreto, quando se tem os parâmetros do material controlados ou, quando não é possível, obter valores de referência para o concreto que precisa ser caracterizado, após situações de exposição a altas temperaturas (DAUNGWILAILUK et al., 2017; HWANG et al., 2018; MALHOTRA; CARINO, 2003;

PRIOSTA; MOURA et al., 2023). Portanto, o objetivo deste trabalho foi obter a correlação entre valores de VPU e Rc de concretos submetidos a altas temperaturas, variando o tipo de agregado graúdo.

METODOLOGIA:

Seguindo recomendações da NBR 5738 (ABNT, 2016), RILEM TC200-HTC e RILEM TC129-MHT, foram moldados corpos de prova cilíndricos com 10 cm de diâmetro e 30 cm de altura. Essas amostras foram divididas em 5 grupos, sendo cada grupo composto com 3 corpos de prova para cada tipo de agregado graúdo (basalto e granito). Um grupo foi mantido como controle, enquanto os outros 4 foram submetidos a temperaturas de 200 °C, 400 °C, 600 °C e 800 °C, em forno elétrico localizado no Laboratório de Estruturas da FECFAU/Unicamp, adotando-se taxa de aquecimento e resfriamento de 1 °C/min, com patamar de 60 min, conforme RILEM TC129-MHT- Part 5 (corpos de prova com 10 cm de diâmetro) e seguindo estudo de Sollero (2019). Os CPS foram moldados a partir de 2 traços de concreto de resistência convencional (30 MPa), compostos por cimento CPII-E-32, variando-se o tipo de agregado graúdo em basalto (CCV-B) e granito (CCV-G), com proporção dos materiais de 1:2:3 (cimento; areia natural média; agregado graúdo) e relação água-cimento de 0,49. Os materiais utilizados no concreto foram submetidos a ensaios de caracterizações físicas e químicas, conforme *Tabelas 1 e 2*.

Método/norma	Resultados													
FRX e Perda ao Fogo	Amostra	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	SrO	PF
	Cimento Portland CP II E 32	24,9	6,21	2,39	52,2	2,41	1,86	0,17	0,77	0,3	0,13	0,32	0,25	7,35

Tabela 1: Composição química Cimento Portland em %

Método/norma	Resultados									
	Agregados	MF	ρ (g/cm ³)	ρs (g/cm³)	d (g/cm ³)	h (%)				
NBR NM 248 e NBR 16917	Granito	3,45	2,91	2,95	3,01	1,09				
	Basalto	3,82	2,53	2,54	2,56	0,4				
NBR NM 238, NBR 16973 e NBR 16972	DMC (mm)	MF	ds (g/cm ³)	dc (g/cm ³)	m (%)	H (%)				
NBK NWI 236, NBK 10973 e NBK 10972	4,75	1,86	1,57	1,72	0,85	0,1				
NBR NM 43, NBR NM 65, NBR 16372,	ρ (g/cm³)	A	Ti	Tf	S (m ² /Kg)	F (%)				
NBR 11579 e NBR 16605	3,012	34,4	2h 39 min	4h 51 min	461,775	0,84				

Tabela 2: Ensaios de caracterização

Os ensaios de ultrassom foram realizados antes e após a exposição dos corpos de prova às altas temperaturas, através do equipamento Pundit (Proceq, Suiça) com transdutores de face plana e onda longitudinal de 54 kHz, executando-se no mínimo 3 leituras com variação máxima de 10% em relação à média. Os ensaios foram executados através da transmissão direta, conforme norma NBR 8802 (ABNT, 2019). A resistência à compressão do concreto foi obtida através de ensaios de compressão axial, utilizando prensa hidráulica EMIC (modelo "DL 30000"), com capacidade máxima de 300kN.

RESULTADOS E DISCUSSÃO:

A resistência à compressão residual média (%) dos corpos de prova executados com basalto e granito, bem como desvio padrão e coeficiente de variação são apresentados na Tabela 3. Na Figura 1, são apresentados os fatores de redução da VPU (%) e da resistência à compressão residual (fc.e (kc.e = f_{c,0}/ f_{c,20}). Nota-se que os 2 tipos de agregado apresentaram valores residuais de Rc menores que a curva padrão (NBR 15200, 2004) até a temperatura de 400 °C. entretanto, o concreto com agregado basalto obteve valores superiores nas temperaturas de 600 °C e 800 °C, em relação à NBR 15200 e ao concreto com granito, devido sua maior estabilidade térmica quando comparado com outros agregados. (SOLLERO, 2019, apud Khoury, 1995). Aos 200°C há retração da pasta cimento, com perda da água livre, causando aumento de vazios e microfissuras (MA et al., 2015). Nesta temperatura, houve a redução de 5,41% e 17% da Rc residual do CCV-B e CCV-G, respectivamente. As reduções da resistência e da VPU aos 400 °C tornam-se mais significativas sendo respectivamente, 22,59% e k_{c,θ} = 0,6788 para basalto; 42,93 % e kg. e = 0.6461 para granito. Segundo Souza e Moreno Jr (2010 apud NEVILLE et al. 1997), aos 600°C a redução é justificada pelo desplacamento das camadas mais superficiais do concreto, que intensificam as microfissuras interna na zona de transição entre a pasta e agregado. Os dados coletados expõem dificuldades na estabilização da leitura da VPU devido à fissuração, além da diminuição da resistência à compressão de quase 50% para o CCV-B. Destaca-se a redução 80,5% do CCV-G.

Tipo de agregado graúdo			ĺ	Basalto		Granito				
		σ médio (MPa)	σ res (%)	Desvio Padrão (MPa)	Coeficiente de variação (%)	σ médio (MPa)	σ res (%)	Desvio Padrão (MPa)	Coeficiente de variação (%)	
temperatura	Referência	33,128	100,00	0,419	1,27	35,435	100,00	1,845	5,21	
	200°C	31,335	94,59	2,098	6,69	32,295	83,01	1,169	3,62	
	400°C	22,485	67,88	2,201	9,79	22,893	63,31	2,733	11,94	
	600°C	17,298	52,21	0,929	5,37	10,550	19,50	0,262	2,49	
	800°C	7,353	22,2	0,413	5,62	3,781	17,49	0,074	1,97	

Tabela 3 : Resistência a compressão residual

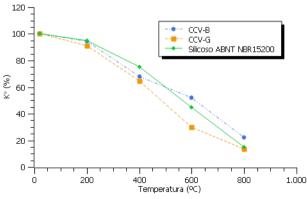


Figura 1: Fator de redução em função da temperatura

Na *Tabela 4*, são expostos os resultados de VPU média para os 5 grupos de temperaturas para concretos graníticos e basálticos.

Tipo de agregado graúdo		Ва	salto		Granito			
VPU (m/s)		VPU média pré aquecimento	VPU Residual / Residual VPU pré		VPU média pré aquecimento	VPU Residual	Residual / VPU pós	
temperatura	Referência	4077,667		100,00%	4485,917		100,00%	
	200°C	4050,750	3360,083	82,95%	4405,250	3656,750	83,01%	
	400°C	4035,250	3123,833	77,41%	4330,083	2471,167	57,07%	
	600°C	4032,500	1550,917	38,46%	4502,000	878,083	19,50%	
	800°C	4127,833	1172,917	28,41%	4497,000	786,500	17,49%	

Tabela 4: Fatores de redução da resistência à compressão residual

Na Figura 2, é apresentado a correlação polinomial de segunda ordem entre resistência mecânica residual e a velocidade de propagação de onda ultrassônica residual (VPU) dos corpos de provas ensaiados, com coeficientes de determinação R² para concretos de basalto e granito de 0,97 e 0,99, respectivamente. Uma das opções para continuar as análises de estimativa das propriedades residuais de concretos com auxílio de ensaios da VPU, seria a correlação entre a VPU e a temperatura, para depois considerar a classe de resistência ou outros fatores de interferência, conforme Moura et al. (2023).

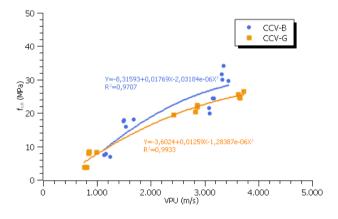


Figura 2: Resistência a compressão em função da VPU

CONCLUSÕES:

Conclui-se que a VPU e a resistência de compressão residual sofrem redução progressiva em função do aumento da temperatura, ademais, através da revisão bibliográfica e dos resultados obtidos foi evidenciado a grande influência exercida pelo tipo de agregado graúdo empregado e a insuficiência da classificação de agregados em silicosos ou calcários para a determinação do comportamento do material, conforme normalmente são adotados nas normas nacionais. Embora a correlação entre a VPU e a resistência residual do concreto tenham resultado em valores de R² muito próximos de 1, as expressões propostas são válidas apenas para o conjunto de dados analisados, visto que parâmetros como relação a/c e tipo de agregado afetam as propriedades residuais (Rc e VPU) de forma distinta.

BIBLIOGRAFIA

ARIOZ, Omer. Effects of elevated temperatures on properties of concrete. **Fire Safety Journal**, [S. I.], v. 42, n. 8, p. 516–522, 2007. DOI: 10.1016/j.firesaf.2007.01.003.

Associação Brasileira de Normas Técnicas – "ABNT NBR 15200. Projeto de Estruturas de Concreto em Situação de Incêndio". 2012. 54 p.

Associação Brasileira de Normas Técnicas. NBR 5738:2016 Concreto – Procedimento para moldagem e cura de corpos de prova – ABNT/CB-018 Cimento, Concreto e Agregados. Rio de Janeiro, 2016

Associação Brasileira de Normas Técnicas. NBR 8802. Determinação da velocidade de propagação de onda ultrassônica. Rio de Janeiro, 2019

DAUNGWILAILUK, Totsawat; CAO, Thi Nguyen; PANSUK, Withit; PHEINSUSOM, Phoonsak. Evaluating Damaged Concrete Depth in Reinforced Concrete Structures under Different Fire Exposure Times by Means of NDT and DT Techniques. **Engineering Journal**, [S. I.], v. 21, n. 7, p. 233–249, 2017. DOI: 10.4186/ej.2017.21.7.233.

DIAS, Alisson Rodrigues de Oliveira; AMANCIO, Felipe Alves; RAFAEL, Maria Fabíola de Carvalho; CABRAL, Antônio Eduardo Bezerra. Comportamento do concreto submetido a elevadas temperaturas. **Matéria (Rio de Janeiro)**, [S. I.], v. 25, n. 2, p. e-12629, 2020. DOI: 10.1590/s1517-707620200002.1029.

HWANG, Euichul; KIM, Gyuyong; CHOE, Gyeongcheol; YOON, Minho; GUCUNSKI, Nenad; NAM, Jeongsoo. Evaluation of concrete degradation depending on heating conditions by ultrasonic pulse velocity. **Construction and Building Materials**, [S. I.], v. 171, p. 511–520, 2018. DOI: 10.1016/j.conbuildmat.2018.03.178.

KODUR, Venkatesh. Properties of Concrete at Elevated Temperatures. **ISRN Civil Engineering**, [S. I.], v. 2014, p. 1–15, 2014. DOI: 10.1155/2014/468510.

MA, Qianmin; GUO, Rongxin; ZHAO, Zhiman; LIN, Zhiwei; HE, Kecheng. Mechanical properties of concrete at high temperature—A review. **Construction and Building Materials**, [S. I.], v. 93, p. 371–383, 2015. DOI: 10.1016/j.conbuildmat.2015.05.131.

MALHOTRA, V. M.; CARINO, Nicholas J. **Handbook on Nondestructive Testing of Concrete**. 0. ed. [s.l.]: CRC Press, 2003. DOI: 10.1201/9781420040050. Disponível em: https://www.taylorfrancis.com/books/9781420040050. Acesso em: 28 jan. 2023.

MOURA, Marinara Andrade Do Nascimento; MORENO, Armando Lopes; FERREIRA, Gisleiva Cristina Dos Santos. Ultrasonic testing on evaluation of concrete residual compressive strength: A review. **Construction and Building Materials**, *[S. I.]*, v. 373, p. 130887, 2023. DOI: 10.1016/j.conbuildmat.2023.130887.

PRIOSTA, Thiago Drozdowski; MOURA, Marinara A. N. DETERMINAÇÃO DO MÓDULO DE ELASTICIDADE DO CONCRETO PÓS INCÊNDIO: UMA REVISÃO DA LITERATURA. [S. I.], [s.d.].

RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures – Compressive strength for service and accident conditions. Materials and Structures, [s.l.], V.28, p. 410-414, 1995

RILEM TC 129-MHT. Test methods for mechanical properties of concrete at high temperatures – Part 4: Tensile strength for service and accident conditions, Materials and Structures, [s.l.], V. 33, p. 219-223, maio 2000

SOLLERO, Marcela. **Propriedades mecânicas residuais do concreto em situação de incêndio**. 2019. Mestra - Universidade Estadual de Campinas, Campinas, 2019. DOI: 10.47749/T/UNICAMP.2019.1095801. Disponível em: http://acervus.unicamp.br/index.asp?codigo_sophia=1095801.

SOUZA, A. A. A. De; MORENO JR, A. L. Efeito de altas temperaturas na resistência à compressão, resistência à tração e módulo de deformação do concreto. **Revista IBRACON de Estruturas e Materiais**, [S. I.], v. 3, n. 4, p. 432–448, 2010. DOI: 10.1590/S1983-41952010000400005.

WONG, Y. L.; POON, C. S.; AZHAR, S. Concrete under Fire: Damage Mechanisms and Residual Properties. [S. I.], [s.d.].