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1 Introduction

Materials science is a rapidly evolving field that involves the study of the properties and behavior

of various materials that have numerous applications in modern technology. The research in this field

involves the development of new materials with improved properties and the discovery of new applications

for existing materials. The designs of materials for specific applications [1] is a crucial focus area that

has the potential to revolutionize industries and applications ranging from electronics to medicine and

energy.

As an important class of materials, semiconductors gained its relevance in the late 1940s with the

invention of the first transistor [2]. Since then, the ability to engineer the electronic and optical properties

of semiconductors through doping, hetero structuring, and other techniques has also opened up new

avenues for research and development in the field.

In this project, we intend to investigate how the type of dopants (C, B and N), their number and

spatial distribution pattern affect the electronic structure of some two-dimensional benzenoid structures:

graphene [3, 4], and polyanilines [5, 6, 7]. In particular, we intend to design some structures for responses

within some ranges (gap and electronic localization). For this study we intend to use genetic algorithm

techniques [8, 9, 10] coupled with the simple Hückel tight-binding Hamiltonian [11, 12, 13].

2 Methodology

2.1 Hückel Molecular Orbital

For the electronic part, we used the simple Hückel molecular orbital theory (HMO) [11]. The tight-

binding Hamiltonian is defined as follows:

H =
∑
i

αi|i⟩⟨i|+
∑
i,j
i ̸=j

βi,j |i⟩⟨j|

where i and j are the atomic site indices, αi and βij are the usual Coulomb and hopping integrals, re-

spectively. The values for these integrals in the case of carbon, nitrogen and boron are well parameterized

in the [11, 14] literature.

This method is based on LCAOs (linear combination of atomic orbitals) approximation:

ψπj
=

n∑
r

cjrϕr
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and the degree of location can be easily estimated by calculating the IPN (inverse participation number):

Ij =

∑
r |cjr|4

(
∑

r |cjr|2)
2

the IPN can assume values from zero (maximum delocalization) to one (located on a single orbital.

Despite its simplicity, Hückel’s method is capable of producing reliable qualitative results for planar

systems [15, 16].

Figure 1: The monomeric units of the PANIs family.
A - leucoemeraldine, B - emeraldine, C - diproto-
nated emeraldine

After solving the eigensystem of the Hamilto-

nian, the gap is found by counting the number of

π-electrons given off by each atom, then filling in

the molecular orbitals and identifying the HOMO

(Highest Occupied Molecular Orbital) and then

subtract its energy value with the value for the

energy of the LUMO (Lowest Unoccupied Molecu-

lar Orbital).

For the one-dimensional PANIs, Hamiltonian

matrices were generated similarly to the benzene

case[11], by counting the atomic sites along a sin-

gle line that runs through the entire structure and

visits each site in order. This counting logic pro-

duces block diagonal Hamiltonian matrices using

the simple Hückel method, where each block rep-

resents the monomeric units of the PANIs family

Figure 1.

However, this same counting logic does not produce block diagonal matrices for two-dimensional

structures like graphene. Instead, the structure was divided into multiple lines running through each

“row” of the space lattice, as shown in Figure 2.

Figure 2: Exemple of the counting methods tested in the study. (a) a single line running through all the
atomic sites of the molecule. (b) multiple lines running through each row of the molecule.

2.2 Genetic Algorithms

Chromosomes in the GA population are typically in the form of a bit string, so that each position on

the chromosome has two possible alleles, 0 and 1 (e.g. [0, 1, 1, 0, ..., 0, 0, 1]). Each chromosome represents
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a point in the hyperspace of possible solutions to the problem at hand. The GA then iterates through

the population of chromosomes, calculating each individual performance (fitness) value. Then, the code

proceeds to reproduce the population by random selecting the breeders within the desired performance

range. Therefore, as the generations goes on, the algorithm replaces the less fit individuals by more fit

ones.

Most GAs need this evaluator function that assigns a numerical value (performance) to each chromo-

some in the population, this function is interpreted as a hyperparameter of the algorithm. The simplest

forms of GA involve, at least, this three operators [8, 9, 10]: selection, reproduction/crossover and

mutation.

Each iteration of this process is called a generation. The entire set of generations is what we called a

round or a run. At the end of each run, there are chromosomes that are distinctly more fit than others. As

the process is intended to be stochastic, two runs using different seeds for the random number generator

will generally produce different results in the details. We present a flow diagram of the algorithm in

Figure 3 [15].

We defined the perfomance function f(x) in absolute units for the project as:

f(x) = 70%× gap+ 30%× IPN (1)

wherein gap = HOMO−LUMO, and is calculated for the highest occupied orbital (HOMO). The weights

used in the function are not particularly significant, except for the normalization and the requirement

that the gap should be the primary factor. We understand that if the gap is large, the delocalization of

the orbital loses its significance.

3 Results and Discussion

Figure 3: Flow chart of the genetic algorithm.

The algorithm was first developed to work with

polyanilines (PANIs) and then adapted to work

with the 2D-structures of a honeycomb lattice.

We treated graphene with its edges in zigzag form

(Figure 2), since the method only takes into ac-

count the first neighbors.

We present the results of the genetic search for

the PANIs polymers with 200, 300 and 500 rings

in Table 1. Only some of the best candidates are

shown for the AxByCz composition. Also, the first

solutions of the graphene BN search can be found

in Table 2 for different sizes.

The code presented results that are in agree-

ment with the literature for known molecules, such

as benzene, pyridine [11, 12, 17], the PANIs poly-

mer family [7, 15] and pure graphene sheets. This

validates the implementation of the simple Hückel

method; once the entry of the secular determinant

of the molecule is correct, the output will yield sat-

isfactory results for electronic gap (in hopping units for carbon bonding, β ≈ 2.5V [11]) and IPNs. Most

of the data and its analysis do not fit into this document.
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Size Composition gap [β] IPN f(x)
200 rings A48B44C8 0.00018 0.00175 0.00065
300 rings A18B127C5 0.00016 0.00139 0.00053
500 rings A28B212C10 0.00003 0.00082 0.00027

Table 1: Some of the best canditates of the genetic search for the PANIs polymers.

Solutions f(x) gap [β] IPN
C22N5B3 0.02976 0.0151 0.06396
C39N7B2 0.01714 0.00351 0.04895
C66N4B0 0.01472 0.00291 0.04227

Table 2: First results of the BN search for graphene square sheets with 30, 48, and 70 atoms, respectively.

4 Conclusion

As said before, the Hückel method results are in agreement with the literature for known molecules.

The genetic algorithm was developed and was able to reproduce the chromosomes through several genera-

tions, yielding an enormous variety of results. The code can be adapted to work with other bidimensional

carbon structures, taking into account the changes in the parameters of the Hamiltonian. Most of the

data still needs to be presented and discussed into future works
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