

Título: Integridade Superficial de Furos em Alumínio Automobilístico.

Bolsista: Jean Luca Cordoba Pereira.

Orientador: Daniel Iwao Suyama

INTRODUÇÃO

Segundo dados da Associação Brasileira dos Fabricantes de Veículos Automotores (ANFAVEA), o setor automotivo responde por cerca de 20% do PIB Brasileiro no ano de 2019 e produziu cerca de 2,3 milhões de veículos no ano de 2021 (ANFAVEA, 2022). Nesse âmbito, o setor automotivo cresce tanto na área tecnológica quanto no uso de materiais cada vez melhores, por isso, ganha espaço no setor o uso das ligas de alumínio, já que o material possui grande versatilidade nos processos de fundição e usinagem, dentre outras características como leveza e caráter anticorrosivo (BAMBERG, 2021).

Destaca-se para esse projeto o uso do alumínio automobilístico nos sistemas de freio ABS e a furação como processo de fabricação do componente. De acordo com a ABNT NBR 6175 de 2015, a usinagem é o processo mecânico que, mediante a remoção do cavaco por determinada ferramenta, visa conferir a uma peça a forma, as dimensões ou o acabamento especificado, ou ainda uma combinação qualquer destes três itens.

Segundo Diniz, Marcondes e Coppini (2013), em geral, as ligas de alumínio automobilístico são facilmente usináveis, com baixo consumo de energia por unidade de volume de metal removido devido à sua baixa resistência mecânica. As temperaturas de usinagem costumam ser baixas e altas velocidades de corte são possíveis. No entanto, em termos de usinabilidade baseada em rugosidade da peça e características do cavaco, não é possível afirmar que o alumínio tenha alta

usinabilidade, pois, em condições normais, o cavaco formado é longo e o acabamento superficial é insatisfatório devido à alta ductilidade dessas ligas. Ainda assim, é possível obter bons acabamentos superficiais se a velocidade de corte for suficientemente alta e a geometria da ferramenta for adequada.

METODOLOGIA

Materiais e Métodos

O material utilizado é uma liga de alumínio contendo 9% de silício, fornecida pela empresa BOSCH, que se apresenta em formato de lingote fundido e segmentado em placas serradas com aproximadamente 20 mm de espessura (Fig. 1 a seguir).

Figura 1 - Placas de alumínio.

Os corpos de prova a serem confeccionados serão ajustados para análise metalográfica e terão formato cúbico. Os ensaios foram feitos no Laboratório de Manufatura da Faculdade de Ciências Aplicadas (FCA/UNICAMP) utilizando brocas helicoidais em matriz fatorial completa de 2 fatores em 2 níveis.

Planejamento Experimental

Na placa fornecida foram realizados os ensaios de furação com brocas helicoidais como primeira etapa da matriz experimental. Ao contrário da proposta inicial, foi utilizada uma matriz fatorial completa de 2 fatores em 2 níveis (2^2) considerando os parâmetros de usinagem: velocidade de corte (v_c) , avanço por dente (f_z) , pois o material foi fornecido em apenas 1 condição (sem tratamento térmico). Cada condição de usinagem será realizada com, no mínimo, uma repetição para que seja feita a análise estatística dos resultados (Fig. 2 a seguir)

Figura 2- Placas de alumínio já com ensaios realizados.

Após a usinagem, foram realizadas operações de acabamento, como o alargamento dos furos de diâmetros menores, para alcançar uma tolerância na faixa de IT7. Os corpos de prova ainda foram cortados no sentido longitudinal, próximo à linha de centro dos furos em serra para que não ocorresse nenhuma alteração na superfície ou sub-superfície (Fig 3. a seguir).

Figura 3 - corpos de prova cortados em seção transversal e longitudinal.

Estes ainda serão embutidos em resina acrílica e terão a seção transversal e longitudinal analisadas através de metalografia. A preparação seguirá a norma ABNT NBR 13284 de 1995.

Após a revelação da microestrutura, as seções longitudinais serão analisadas em microscópio óptico e microscópio eletrônico de varredura para análise de camada deformada.

Resumo de Atividades

O primeiro passo para a preparação dos corpos de prova foi a obtenção da amostra do material a ser estudado, liga de alumínio contendo 9% de silício.

A princípio a liga foi fornecida em formato de lingote e a partir deste foram realizadas as operações de furação utilizando brocas helicoidais a fim de promover bom acabamento superficial e menor rugosidade. Em seguida, foram realizadas operações de acabamento, como o alargamento de furos de diâmetros menores.

As amostras cortadas com serra para evitar alterações na superfície ainda serão embutidas e analisadas em microscópio óptico e eletrônico de varredura para análise da camada deformada

CONCLUSÃO

Espera-se que a microestrutura do alumínio não seja afetada negativamente durante o processo de usinagem por furação, especialmente se as temperaturas de corte não forem controladas adequadamente levando a formação de zonas afetadas pelo calor (ZAC), que podem afetar as propriedades mecânicas e a resistência à corrosão da peça. Além disso, a formação de cavacos pode levar à deformação plástica e à introdução de tensões residuais na peça, afetando ainda mais sua microestrutura.

Visando entender como a liga de alumínio estudada se comporta, espera-se assim como para Weingaertner e Schroeter (1990) que os parâmetros de usinagem sigam as recomendações descritas como velocidade de corte mais alto quanto possível, reduzindo custos, tempo de processo e diminuição da formação da aresta postiça de corte, apresentando também melhora na quebra do cavaco e acabamento superficial. Outrossim, para o avanço dependerá da qualidade que deseja-se obter, neste caso, IT7. Para profundidade de corte a máxima dentre os limites da ferramenta e equipamento utilizado. Quando aumentamos a velocidade de corte, segundo Hayajneh apud vieira et.al (2001), o aumento da temperatura melhora o cisalhamento do material e minimiza o efeito da formação de aresta postiça melhorando a qualidade superficial, o que possivelmente ocorreu com a broca de MD. Para Abdelhafeez et al. (2015), em seu estudo quando realizou a furação em duas ligas de alumínio, também não encontrou grande influência da velocidade de corte na formação de rebarbas.

Referências Bibliográficas

ASSOCIAÇÃO BRASILEIRA DOS FABRICANTES DE VEÍCULOS AUTOMOTORES. Anuário da Indústria Automobilística Brasileira: 2022. 130 p. Disponível em: https://anfavea.com.br/anuario2022/2022.pdf. Acesso em: 17 Maio de 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 13284**: Preparação de corpos-de-prova para análise metalográfica - Procedimento. Rio de Janeiro: ABNT, 1995.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 6175**: Usinagem - Processos Mecânicos. Rio de Janeiro: ABNT, 2015.

BAMBERG, P. A Revolução Industrial do Alumínio no Setor Automotivo. **Revista Alumínio**. São Paulo: [S.n.], 2021.

DINIZ, A.E.; MARCONDES, F.C.; COPPINI, N.L. **Tecnologia da Usinagem dos Materiais**. 8 ed. São Paulo: Artliber, 2013.

WEINGAERTNER, Walter Lindolfo; SCHROETER, Rolf Bertrand. **Tecnologia de Usinagem do Alumínio e Suas Ligas.** São Paulo: Alcan Alumínio do Brasil, 1990. 73

p.

ABDELHAFEEZ, A.m. et al. **Burr Formation and Hole Quality When Drilling Titanium and Aluminium Alloys.** ScienceDirect. Birmingham, UK, p. 230-235. 2015.