

Determinação da sensibilidade do experimento DUNE em diferentes partes do espaço paramétrico para a detecção de neutrinos estéreis Palavras-Chave: neutrinos, neutrinos estéreis, oscilação de sabor

Autores:

Gustavo Fróes do Vale - IFGW, UNICAMP Prof. Dr. Pedro Cunha de Holanda (orientador) - IFGW, UNICAMP

1 Introdução

Os neutrinos são um grupo de partículas fundamentais do universo, previstas pelo modelo padrão da física de partículas [1]. Seu estudo teve início no começo do século XX, como uma sugestão do físico austríaco Wolfgang Pauli, para preservar a lei de conservação de energia em decaimentos β . Quase 100 anos depois de seus estudos iniciais, muitas propriedades dessas partículas já foram descobertas. A existência de não apenas um, mas de três sabores (tipos) de neutrinos, já foi confirmada experimentalmente (o neutrino eletrônico (ν_e), o neutrino muônico (ν_{μ}) e o tauônico (ν_{τ})). Em 1957, Bruno Pontecorvo propôs pela primeira vez um mecanismo onde neutrinos de um sabor podiam ser detectados com outros sabores quando eles viajavam pelo espaço-tempo [2]. Esse fato foi confirmado experimentalmente no final da década de 60 [3] e ficou conhecido como oscilação de neutrinos.

A descoberta da oscilação de neutrinos teve um papel fundamental nos estudos de suas propriedades. Como eles só interagem por meio da força fraca [1], detectá-los experimentalmente é extremamente difícil, e uma das principais dificuldades é a detecção da massa dessas partículas. Por causa disso, por muitos anos, acreditou-se que neutrinos não tinham massa. Contudo, a existência da oscilação de neutrinos resolve esse problema, já que ela só acontece se admitirmos que neutrinos têm massa [1].

Por causa de sua importância, essas oscilações foram muito estudadas desde então. Em sua maioria, os experimentos feitos para observar esse fenômeno confirmam o que é previsto pelo modelo padrão da física de partículas. Porém, um estudo recente do experimento MiniBooNE, realizado no Fermilab (E.U.A), reportou um número diferente do previsto pela teoria [4]. O experimento em questão coletou dados de oscilações de neutrinos eletrônicos em neutrinos muônicos entre 2002 e 2017, por meio de um detector de 800 toneladas de óleo mineral. Em seus achados, o grupo afirma que encontrou um número maior do que o previsto de neutrinos eletrônicos e combinou seus resultados com um estudo mais antigo do experimento LSND (Liquid Scintillator Neutrino Detector) para afirmar uma relevância de 6.1σ . O mesmo grupo ainda justifica que essa discrepância é um indicativo de um quarto tipo de neutrino, chamado de neutrino estéril. Ele, diferente dos outros três sabores, não interagiria com a força fraca e seria um passo intermediário entre ν_{μ} e ν_{e} , promovendo sua oscilação.

O experimento DUNE (Deep Underground Neutrino Experiment) é um experimento que será realizado nas instalações do Fermilab e será um dos maiores experimentos a acontecer nas próximas décadas. A imensa quantidade de dados que será produzida nesse experimento terá um papel fundamental em determinar a validade dos achados do experimento MiniBooNE, já que uma série de outros experimentos, como o IceCube Neutrino Observatory, Minos, Bugey ou Daya-Bay, para dar alguns exemplos, são consistentes com a existência de apenas 3 sabores de neutrinos.

Para estudar a física de neutrino, o DUNE consistirá em três partes principais: o acelerador de prótons, um detector próximo ao acelerador (*Near detector*) e um detector mais afastado (*Far detector*), como mostra a Figura 1 [5]. Primeiramente, para aumentar o número de detecções, o experimento produzirá um feixe intenso de neutrinos. Para isso, ele contará com um acelerador de prótons, que liberará partículas carregadas chamadas píons (π), que, por sua vez, decaem rapidamente em diversas partículas, dentre elas, os neutrinos. Esse feixe é direcionado, então, ao primeiro detector: o *Near detector*. A principal função desse detector será caracterizar o feixe antes que os neutrinos sofram a oscilação, melhorando assim o entendimento do feixe que chegará ao *Far detector*. O feixe segue,

Figura 1: Diagrama do experimento DUNE tirado de [5]

então, até o *Far detector*, localizado a 1300 km da fonte, onde será capaz de detectar neutrinos após eles oscilarem. Para reduzir o número de detecções de outras fontes, esse detector estará localizado a 1.5 km de profundidade. Com essa configuração, o DUNE será capaz de estudar diversos aspectos de neutrinos e certamente irá mudar nosso entendimento sobre essas partículas.

Portanto, o objetivo desta pesquisa é não apenas familiarizar o aluno com os estudos da física de neutrinos, mas também determinar como os sensores do experimento DUNE interagirão com os neutrino. Em específico, busca-se saber a capacidade do experimento em detectar uma possível quarta família de neutrinos por meio de desvios na quantidade esperada de neutrinos no *Far detector* e como essa capacidade irá depender das possíveis propriedades dessa nova partícula fora do modelo padrão.

2 Metodologia

Para estudar a sensibilidade do experimento DUNE, foi utilizado o software conhecido como GLoBES (General Long Baseline Experiment Simulator) [6] [7]. Esse software permite simular experimentos de oscilação de neutrinos de longa distância e reatores, proporcionando grande flexibilidade para alterar propriedades do experimento por meio da linguagem abstrata AEDL (abstract experiment definition language). Essa linguagem facilita a incorporação de novos experimentos, como o DUNE [8], ao software. Além disso, o GLoBES possui uma biblioteca em C/C++ que nos permite acessar os resultados da simulação, como a taxa de eventos, probabilidade de oscilações e valores $\Delta \chi^2$, de forma sofisticada.

No entanto, na sua forma padrão, o GLoBES está configurado para simular oscilações considerando apenas as três famílias tradicionais de neutrinos. Para incorporar uma possível quarta família, foi necessário reescrever o código responsável pelo cálculo da matriz de probabilidade do experimento e incluir os novos parâmetros de oscilação em outras partes do software.

A probabilidade de um neutrino ν_{α} oscilar para um neutrino ν_{β} em um cenário com n famílias de neutrinos é dada pela fórmula:

$$P_{\alpha\beta} = \delta^{\alpha\beta} - 4\sum_{i>j}^{n} \operatorname{Re}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta a j}]\sin^{2}X_{ij} + 2\sum_{i>j}^{n} \operatorname{Im}[U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta a j}]\sin 2X_{ij}$$
(1)
$$X_{ij} \approx 1.2637 \frac{\Delta m_{ij}^{2}L}{E} \left(\frac{\operatorname{Mev}}{eV^{2}m}\right)$$

Onde δ^{ij} é o delta de kronecker, U é a matriz PMNS (Pentecorvo-Maki-Nakawaga-Sakata), que nesse caso é definida como:

$$U = R_{34}(\theta_{34}, \delta_{34})R_{24}(\theta_{24}, \delta_{24})R_{14}(\theta_{14}, 0)R_{23}(\theta_{23}, \delta_{23})R_{13}(\theta_{13}, 0)R_{12}(\theta_{12}, 0)$$
(2)

A matriz $R_{ij}(\theta, \delta)$ é uma matriz de rotação no plano ij, de dimensão 4×4 , com ângulo θ e fase complexa δ . Para incorporar uma possível quarta família de neutrinos, além dos 6 parâmetros tradicionais de oscilação $(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{cp}, \Delta m_{21}^2, \Delta m_{31}^2)$, foram adicionados outros 6 novos parâmetros $(\theta_{14}, \theta_{24}, \theta_{34}, \Delta m_{41}^2, \delta_{24}, \delta_{34})$.

Para explorar o espaço paramétrico, foram analisados três casos distintos, usando como referência os valores de um estudo anterior [9], mantendo os valores dos parâmetros de oscilação padrão conforme a referência [10], e os

Casos analisados						
	$\sin^2 \theta_{14}$	$\sin^2 \theta_{24}$	$\sin^2 \theta_{23}$	$\Delta m_{14}^2 \ { m eV}^2$	δ_{24}	δ_{34}
Caso 1	0.023	0.030	0	0.93	$\pi/4$	0
Caso 2	0.023	0.030	0	10^{-2}	$\pi/4$	0
Caso 3	0.040	0.320	0	10^{-5}	$\pi/4$	0

Tabela 1: Parâmetros da oscilação da quarta família analisados nas simulações com o GloBES.

valores dos novos parâmetros estão listados na tabela 1. Em todas as simulações, foi assumida a ordem padrão das massas.

3 Resultados e Discussão

Após a simulação de diversos experimentos com o GLoBES, importantes conclusões sobre a sensibilidade do experimento DUNE para um espaço paramétrico com uma nova família de neutrinos puderam ser obtidas. Inicialmente, ao analisar a Figura 2, constatou-se que a existência dos neutrinos estéreis adicionaria apenas uma nova frequência de oscilação, sendo detectável apenas por experimentos com boa resolução de energia.

Figura 2: Comparação da probabilidade de oscilação de neutrinos muônicos para eletrônicos considerando 3 famílias e 3+1 famílias, com os valores do caso 1.

O DUNE foi então simulado considerando um tempo de operação de 5 anos, conforme as especificações fornecidas em [8]. Os resultados mostraram que a taxa de eventos para os casos com e sem um quarto neutrino é semelhante, como ilustrado na Figura 3. No entanto, para avaliar a real sensibilidade do DUNE em relação aos novos parâmetros, foram realizadas diversas simulações para calcular os valores de $\Delta \chi^2$. Um exemplo desses resultados é apresentado na Figura 4, que ilustra a sensibilidade do experimento no plano $\sin^2 \theta_{14} \times \Delta m_{41}^2$. Observou-se que o DUNE não possui uma boa sensibilidade nessa região do espaço paramétrico, falhando em excluir todos os casos com um nível de confiança de 95%. No entanto, no plano $\sin^2 \theta_{24} \times \Delta m_{41}^2$, ele consegue excluir todos os três casos, como mostrado na Figura 5. Esse resultado é de extrema relevância, uma vez que os valores do caso 1 são muito próximos daqueles do ajuste global com neutrinos estéreis [11], permitindo ao DUNE proporcionar maior certeza sobre a possibilidade da existência ou não de um cenário de 3+1 neutrinos.

Figura 3: Exemplo de comparação do numero de eventos de neutrinos eletrônicos em 5 anos de experimento, com os valores do caso 1.

Figura 4: Sensibilidade do experimento DUNE no plano $\sin^2 \theta_{14} \times \Delta m_{41}^2$, com 2 graus de liberdade. Valores à esquerda da curva são excluídos.

Figura 5: Sensibilidade do experimento DUNE no plano $\sin^2 \theta_{24} \times \Delta m_{41}^2$, com 2 graus de liberdade. Valores à esquerda da curva são excluídos.

Referências

- D. J. Griffiths, Introduction to elementary particles; 2nd rev. version, ser. Physics textbook. New York, NY: Wiley, 2008.
- [2] B. Pontecorvo, "Inverse beta processes and nonconservation of lepton charge," Zhurnal Eksperimental'noii Teoretichesk oi Fiziki, vol. 34, p. 247, 1957.
- [3] R. Davis, D. S. Harmer, and K. C. Hoffman, "Search for neutrinos from the sun," *Phys. Rev. Lett.*, vol. 20, pp. 1205–1209, May 1968. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.20.1205
- [4] A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, G. Cheng, J. M. Conrad, R. L. Cooper, R. Dharmapalan, A. Diaz, Z. Djurcic, D. A. Finley, R. Ford, F. G. Garcia, G. T. Garvey, J. Grange, E.-C. Huang, W. Huelsnitz, C. Ignarra, R. A. Johnson, G. Karagiorgi, T. Katori, T. Kobilarcik, W. C. Louis, C. Mariani, W. Marsh, G. B. Mills, J. Mirabal, J. Monroe, C. D. Moore, J. Mousseau, P. Nienaber, J. Nowak, B. Osmanov, Z. Pavlovic, D. Perevalov, H. Ray, B. P. Roe, A. D. Russell, M. H. Shaevitz, J. Spitz, I. Stancu, R. Tayloe, R. T. Thornton, M. Tzanov, R. G. Van de Water, D. H. White, D. A. Wickremasinghe, and E. D. Zimmerman, "Significant excess of electronlike events in the miniboone short-baseline neutrino experiment," *Phys. Rev. Lett.*, vol. 121, p. 221801, Nov 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.121.221801
- [5] B. Abi et al., "The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies," 7 2018.
- [6] P. Huber, M. Lindner, and W. Winter, "Simulation of long-baseline neutrino oscillation experiments with GLoBES," *Computer Physics Communications*, vol. 167, no. 3, pp. 195–202, may 2005. [Online]. Available: https://doi.org/10.1016%2Fj.cpc.2005.01.003
- [7] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, "New features in the simulation of neutrino oscillation experiments with GLoBES 3.0," *Computer Physics Communications*, vol. 177, no. 5, pp. 432–438, sep 2007. [Online]. Available: https://doi.org/10.1016%2Fj.cpc.2007.05.004
- [8] D. Collaboration and B. A. et al., "Experiment simulation configurations approximating dune tdr," 2021.
- [9] J. M. Berryman, A. de Gouvêa, K. J. Kelly, and A. Kobach, "Sterile neutrino at the deep underground neutrino experiment," *Physical Review D*, vol. 92, no. 7, oct 2015. [Online]. Available: https://doi.org/10.1103%2Fphysrevd.92.073012
- [10] P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, "2020 global reassessment of the neutrino oscillation picture," *Journal of High Energy Physics*, vol. 2021, no. 2, feb 2021. [Online]. Available: https://doi.org/10.1007%2Fjhep02%282021%29071
- [11] J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz, "Sterile neutrino oscillations: the global picture," *Journal of High Energy Physics*, vol. 2013, no. 5, may 2013. [Online]. Available: https://doi.org/10.1007%2Fjhep05%282013%29050
- [12] E. Kemp, "The Deep Underground Neutrino Experiment: The Precision Era of Neutrino Physics," Astron. Nachr., vol. 338, no. 9-10, pp. 993–999, 2017.
- [13] G. Fantini, A. Gallo Rosso, F. Vissani, and V. Zema, "Introduction to the Formalism of Neutrino Oscillations," Adv. Ser. Direct. High Energy Phys., vol. 28, pp. 37–119, 2018.