

Estudo e caracterização de nanopartículas de LaF₃ dopadas com Eu(III) e estabilizadas com ácido cítrico.

Emille M. Rodrigues(IC)*, Rafael D. L. Gaspar(PG), Ernesto R. Souza(PG), Italo O. Mazali(PQ), Fernando A. Sigoli(PQ) Laboratório de Materiais Funcionais-Instituto de Química – Universidade Estadual de Campinas – UNICAMP

Palavras-chave: fluoreto de lantânio, ácido cítrico, luminescência, nanopartículas *milli.martinazzo@gmail.com

2011 iniciação científic

Materiais luminescentes, também chamados fósforos, são sólidos que convertem certos tipos de energia em radiação eletromagnética. As aplicações destes materiais é variada e vai desde da construção de dispositivos ópticos até utilização como marcadores biológicos. A estrutura do sólido luminescente é composta por uma matriz hospedeira um e um íon ativador. As matrizes hospedeiras mais utilizadas para materiais luminescentes são normalmente óxidos ou fluoretos, por apresentarem baixo fônon de rede e por serem muito estáveis. Neste projeto, foi estudado o LaF₃ dopado com o íon Eu(III). Foram sintetizadas e caracterizadas nanopartículas de LaF₃ estabilizadas com diferentes quantidades de ácido cítrico. Estas nanopartículas são facilmente dispersas em meio aquoso, e futuramente será estudada a possibilidade de inserção das mesmas em filmes finos de sílica.

Figura 1: Espectros no infravermelho das amostras de LaF, dopadas com Eu(III) estabilizadas com diferentes quantidades de ácido cítrico.

Figura 2: Curva termogravimétrica da amostra de LaF₃ dopada com Eu(III) estabilizada com 2g de ácido cítrico.

Figura 4: Espectros de excitação e de emissão das amostras de LaF₃ dopadas com Eu(III) estabilizada com ácido cítrico.

Conclusão

As análises de IV das amostras com diferentes quantidades de ácido cítrico mostraram que a coordenação do estabilizante na superfície é alterada de acordo com a quantidade utilizada do mesmo e o modo de coordenação na superfície das partículas ente é uma mistura de quelato bidentado e ponte bidentada. Os picos da difração de raios X são alargados para todas as amostras e a imagem de MET confirma que este padrão é devido ao tamanho reduzido das partículas e não à baixa cristalinidade das mesmas. A luminescência mostra um perfil típico do íon Eu(III) em simetria sem centro de inversão. A partir destes estudos foi possível concluir que a melhor quantidade de ácido cítrico para estabilizar as partículas foi de 0,5g (1/4 do proposto na referência utilizada para o método de síntese²).

Δ = assimétrico – simétrico

 Δ (amostras) >> Δ (citrato livre) = unidentado Δ (amostras) << Δ (citrato livre) = quelato

Δ (amostras) Δ (citrato livre) = bidentado					
Atribuição	у ОН	v (OH)H ₂ O	v (CH)	v соон	v _{as} /v _s COO
№ de onda (cm ⁻¹)	3443	3157	2930	1703	1591-1401
Referência ¹ (cm ⁻¹)	3450	3196	-	1728	1590 - 1410

Δ (amostras) = 190 cm⁻¹ Δ (citrato livre) = 205 cm⁻¹

Figura 3: Difratogramas de raios X das amostras de LaF3 dopadas com Eu(III) estabilizadas com diferentes quantidades de ácido cítrico.

Microscopia Eletrônica de Transmissão (MET)

Figura 5: Imagem de microscopia eletrônica de transmissão da amostra de LaF. dopada com Eu(III) estabilizada com 0,5g de ácido cítrico.

Referências

amoto, K.;" Infrared and Raman Spectra of Inorganic and Coordination Compounds – Part B" G^a edition, John Wiley & Sons, New Jersey, 2 ırsan, V.; vanVeggel, F.C.J.M.; Herring, R.A.; Raudsepp, M. "Surface Eu3+ ions are different than "bulk" Eu³⁺ ions in crystalline doped Lt ²Sudarsan, v., 2005, 15,1332

da Silva, M. F. P.; Matos, J. R.; Isolani, P. C. "Synthesis, Ch and Thermal Analysis of 1:1 and 2:3 lanthanide(III) citrates". J. of th 94, 305-311.

