ESTUDO EMPÍRICO DO CRESCIMENTO DA SEÇÃO DE CHOQUE HADRÔNICA TOTAL EM ALTAS ENERGIAS

Paulo Victor Recchia Gomes da Silva (precchia@ifi.unicamp.br) **Orientador: Márcio José Menon** (menon@ifi.unicamp.br) INSTITUTO DE FÍSICA GLEB WATAGHIN UNIVERSIDADE ESTADUAL DE CAMPINAS Serviço de Apoio ao Estudante (SAE/UNICAMP)

Palavras-Chave: Física de Altas Energias - Interações Hadrônicas - Espalhamento Elástico

Resumo

Através de parametrizações analíticas independentes de modelo apresentamos uma descrição empírica dos dados experimentais de seções de choque totais próton-próton (pp) e antipróton-próton (pp) em termos da energia no centro de massa das colisões. Os resultados indicam a possibilidade de um cruzamento, com a seção de choque pp tornando-se maior que a seção de choque $\bar{p}p$ na região de altas energias. No contexto fenomenológico, esse resultado favorece modelos via troca de Odderon (amplitude predominante ímpar). Apresentamos também as previsões para a seção de choque pp na faixa de energia que está sendo investigada no Large Hadron Collider (LHC), CERN.

Introdução

A dependência da seção de choque hadrônica total com a energia das partículas colidentes é um fenômeno ainda não explicado pela Cromodinâmica Quântica, a teoria quântica de campos das interações fortes (hadrônicas). Neste trabalho estudamos parametrizações empíricas (independentes de modelos) para a seção de choque total em colisões próton-próton e antipróton-próton em altas energias (acima de 10 GeV no sistema de centro de massa). Consideramos duas parametrizações consistindo em polinômios do logaritmo natural da energia: (i) um polinômio de segundo grau (com 3 parâmetros livres e baseado na saturação do Limite de Froissart-Martin (FM)) e (ii) um polinômio de primeiro grau somado à uma potência livre do logaritmo (com 4 parâmetros livres e atua como um teste do Limite FM). A partir dos ajustes obtivemos previsões para a seção de choque total próton-próton nas energias de 7 e 14 TeV.

Considerando o número de graus de liberdade, os valores de $\chi^2/{
m gl}$ em todos os casos estão num intervalo de confiança de 98% [3]. Os ajustes indicam um cruzamento das curvas de pp e $\bar{p}p$ (Fig. 2) em energias da ordem de 100 GeV. Entretanto para $\gamma = 2$ não é possível afirmar que este cruzamento realmente ocorre pois a região de cruzamento é sobreposta pelas margens de erro. Já para γ livre, os ajustes apresentam uma região de incerteza menor e a determinação do ponto de cruzamento possui uma confiabilidade estatística maior.

Teoria

Baseamos nossa análise em três resultados formais (independentes de modelo) [1]:

• **Teorema Óptico:** Esse teorema relaciona a seção de choque total com a parte imaginária da amplitude de espalhamento elástica F frontal: $\sigma_{tot} = 4\pi \text{Im}F(\theta = 0)$, onde θ é o ângulo de espalhamento no SCM. Este teorema é um resultado geral de teoria de espalhamento e pode ser demonstrado em Mecânica Quântica Não-relativística, no Eletromagnetismo Clássico bem como num formalismo quântico-relativístico.

• Limite de Froissar-Martin: A partir de primeiros princípios, é possível demonstrar o Limite de Froissart-Martin (FM) que estipula um limite superior para o crescimento da seção de choque total em termos da energia das partículas colidentes: $|\sigma_{tot} \leq K(\ln s)^2|$, onde K é uma constante e s é uma variável de Mandelstam (quadrado da energia total no SCM).

• Seções de Choque Partícula e Antipartícula: Baseado na simetria de cruzamento, podemos definir amplitude de espalhamento elástica pares (+) e ímpares (-) em termos das amplitudes $pp \in \bar{p}p$ e, com o Teorema Óptico, seções de choque: $F_{\pm} = (F_{pp} \pm F_{\bar{p}p})/2 \implies$ $\sigma_{\pm} = (\sigma_{tot}^{pp} \pm \sigma_{tot}^{pp})/2$. Considerando a diferença $\Delta \sigma = |\sigma_{tot}^{pp} - \sigma_{tot}^{pp}| = 2\sigma_{-}$, teremos $\Delta \sigma = 0$ se e somente se $\sigma_{-} = 0$, ou seja, existe um predomíno da amplitude par, explicado pela troca de um Pomeron. Caso contrário, existe a troca de um Odderon de tal modo que a contribuição da amplitude ímpar é não nula [1].

Metodologia

Os dados experimentais disponíveis para a seção de choque total das colisões pp e $\bar{p}p$ acima

Figura 1: Resultados dos ajustes da seção de choque total em função da energia no sistema de centro de massa (linha cheia) e região de incerteza (linha tracejada) para colisões pp (a) e $\bar{p}p$ (b).

de 10 GeV indicam uma dependência aproximadamente parabólica com o logaritmo natural da energia (dados experimentais na Fig. 1). Com base nesse comportamento, consideramos a seguinte parametrização analítica geral:

 $\sigma_{\text{tot}} = a + b \ln(s/s_0) + c \ln^{\gamma}(s/s_0),$

onde a, b, c e γ são parâmetros livres a serem determinados pelos ajustes e $s_0 = 1 \text{ GeV}^2$ (fixo pela massa do próton). Consideramos 2 variantes de ajustes: $\gamma = 2$ fixo (saturação do limite) FM) e γ como parâmetro livre. Utilizamos o código CERN-Minuit para reduzir (ajustar) os dados experimentais coletados no Particle Data Group (PDG) [2] para energias maiores que 10 GeV. Para avaliar a qualidade dos ajustes, utilizamos χ^2 por graus de liberdade (χ^2/gl) e intervalos de confiança [3].

Resultados 4

Os resutados dos ajustes são indicados na Tabela 1: valores dos parâmetros, $\chi^2/{
m gl}$ e os graus de liberdade para as duas variantes. A partir destes valores e via propagação de erros, determinamos σ_{tot} como função da energia bem como sua região de incerteza, mostradas na Fig. 1 separadamente para pp (a) e $\bar{p}p$ (b). Na Fig. 2 apresentamos os resultados em conjunto para pp e $\bar{p}p$ nos casos de $\gamma = 2$ (a) e γ livre (b).

Tabela 1: Resultados dos ajustes através da parametrização (1) e dados com $\sqrt{s} \ge 10$ GeV.

	pp		$\bar{p}p$	
	γ fixo	γ livre	γ fixo	γ livre
<i>a</i> (mb)	$47, 3 \pm 1, 2$	$47, 30 \pm 0, 30$	$57,29 \pm 0,97$	$85,53 \pm 0,50$
<i>b</i> (mb)	$-3,80 \pm 0,40$	$-3,801 \pm 0,068$	$-5, 15 \pm 0, 26$	$-1526,05\pm0,13$
c (mb)	$0,403 \pm 0,030$	$0,404 \pm 0,011$	$0,430 \pm 0,017$	$1505, 78 \pm 0, 13$

Figura 2: Comparação das curvas de σ_{tot} de pp e $\bar{p}p$ para γ fixo (a) e γ livre (b).

Com os resultados dos ajustes determinamos as previsões para a seção de choque total para colisões pp nas energias de 7 TeV e 14 TeV, que serão medidas pelo acelerador Grande Colisor de Hádrons (LHC/CERN, Suíça) (tabela 2).

Tabela 2: Previsões de σ_{tot}^{pp} (mb) nas energias 7 TeV e 14 TeV.

	γ fixo	γ livre
7 TeV	$106, 4 \pm 3, 8$	$106, 4 \pm 1, 6$
$14 \mathrm{TeV}$	$121, 7 \pm 4, 8$	$121, 6 \pm 2, 0$

Conclusão 5

(1)

Os ajustes dos dados experimentais da seção de choque total próton-próton e antipróton-próton através da parametrização (1) representam descrições estatisticamente consistentes, indicando que o limite de Froissart-Martin é verificado tanto para pp quanto para $\bar{p}p$. Os ajustes para os dados de pp apresentam um resultado mais satisfatório em comparação a $\bar{p}p$, já que o primeiro conjunto apresenta um número maior de dados. Entretanto, o caso $\bar{p}p$ apresenta dados em energias maiores fundamental para o entendimento de σ_{tot} em energias assintóticas. O cruzamento observado nas seções de choque pode ser devido à ausência de dados de pp acima de 62, 5 GeV. Nesse sentido os dados a serem obtidos no LHC serão fundamentais para a comprovar ou não esse efeito.

Referências

[1] V. Barone, E. Predazzi, *High Energy Particle Diffraction*, Spring-Verlag, 2002. [2] K. Nakamura et al. (Particle Data Group), J. Phys. G, **37**, 7A, 2010.

