

Avaliação da dureza Knoop de dois cimentos resinosos duais fotoativados por diferentes fontes de luz e espessuras da cerâmica Empress® Esthetic

DINELLI RG*, PAULA AB, AMBROSANO GBM, PUPPIN-RONTANI RM

Área Materiais Dentários/Odontopediatria - FOP/UNICAMP, SP - Brasil

e-mail: robertogdinelli@hotmail.com

(R) CNPa

A polimerização adequada é um fator crucial para a obtenção de melhor desempenho das propriedades físicas dos materiais resinosos, as quais estão diretamente relacionadas com o sucesso clínico destes. A escolha do agente de cimentação deve ser baseada nas propriedades físicas, biológicas e de manipulação deste material, associadas às características da peça protética a ser cimentada. Os cimentos resinosos têm sido muito utilizados na fixação de restaurações indiretas de cerâmica e compósito resinoso. Entretanto, durante o atendimento clínico, vários fatores podem afetar a quantidade de energia recebida pelo cimento resinoso, tais como diferentes fontes de luz, intensidade de luz, duração de exposição à luz, espessura, composição, cor e opacidade do material restaurador. O grau de conversão de monômeros na reação de polimerização é dependente da energia fornecida durante a fotoativação, caracterizada como sendo o produto da intensidade luminosa pelo tempo de exposição. Como indicador do grau de conversão dos cimentos resinosos, o teste de dureza é comumente utilizado por ser considerado um método simples e confiável. Um alto grau de conversão freqüentemente resulta em propriedades físicas e mecânicas melhoradas dos materiais resinosos, proporcionando maior durabilidade e qualidade das restaurações indiretas. O objetivo nesse estudo foi avaliar a dureza Knoop dos cimentos resinosos duais Rely X Unicem e Clearfil AS Cement fotoativados por diferentes fontes de luz e espessuras da cerâmica Empress® 2 Esthetic .

Materiais

Métodos

Preparo das amostras

Empress Esthetic®

Secção da raiz

Inclusão da coroa

Posicionamento da matriz

ReliXTM Unicem

LED Ultralume 5 (Ultradent)

Sobreposição do disco

Fotoativação

Manipulação do cimento

Inserção do cimento

Discos de Empress Esthetic®: A - 1,4 mm e B -2 mm

Mensuração - Dureza Knoop

Elipar TriLight (3M Espe)

Amostras

Lixas de carbeto de silício 400, 600 e 1200

Edentações

Os dados de dureza Knoop foram submetidos aos testes ANOVA e Tukey (p<0,05).

Médias (desvio padrão) de Dureza Knoop em função da

Resultados

fonte, material, espessura e profundidade.

Fonte	Material	Espessura	Profundidade		
			Superfície	Centro	Base
LED	Unicem	1,4	&*53.71 A	&*55.08 A	&*23.71 B
			(3.87)	(2.69)	(2.10)
		2,0	*44.37 A	*50.07 A	*18.83 B
			(4.04)	(5.06)	(2.07)
	Clearfil	1,4	23.18 B	&41.69 A	12.35 C
			(1.89)	(2.78)	(1.19)
		2,0	21.93 B	37.66 A	11.42 C
			(2.50)	(2.97)	(0.92)
QTH	Unicem	1,4	*42.73 B	$\&*60.83\mathrm{A}$	*22.33 C
			(3.23)	(6.24)	(2.14)
		2,0	*38.53 B	*48.83 A	*19.39 C
			(5.32)	(5.05)	(1.90)
	Clearfil	1,4	26.87 B	&50.78 A	14.12 C
			(2.93)	(4.28)	(1.19)
		2,0	24.21 B	39.39 A	12.04 C
			(2.19)	(1.42)	(0.84)

Conclusão

O Rely X Unicem apresentou maiores valores de dureza quando comparado ao Clearfil AS Cement, independente da espessura, profundidade e fonte de luz. A dureza do cimento nas diferentes profundidades é dependente da espessura da cerâmica e da fonte de luz utlizada.