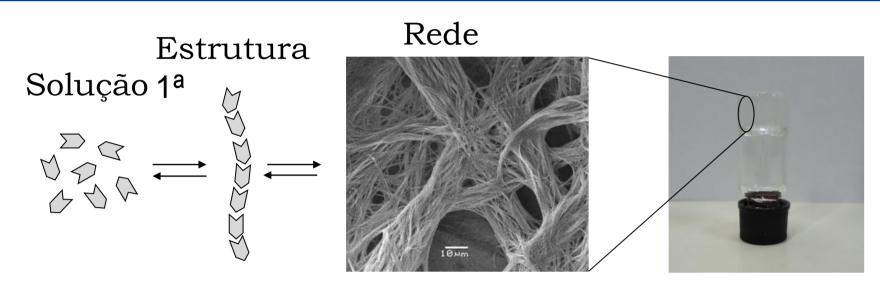


SÍNTESE DE AGENTES GELIFICANTES ORGÂNICOS DE BAIXO PESO MOLECULAR (LMOGS) E A CARACTERIZAÇÃO DE SUAS PROPRIEDADES SUPRAMOLECULARES.

Vitor Thomé Salvador(IC)*, Marlon de Freitas Abreu(PG)*, Paulo C. M. L. Miranda (PQ)**


*Universidade Estadual de Campinas- Instituto de Química- Departamento de Química Orgânica – Caixa Postal 6154- 13084-971- Campinas, São Paulo, Brasil.

**Autor Principal: Telefone: 19 3521-3083; e-mail: miranda@iqm.unicamp.br

Agência Financiadora: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Palavras Chave: Organogéis – Gelificantes – Síntese Orgânica

<u>Introdução</u>

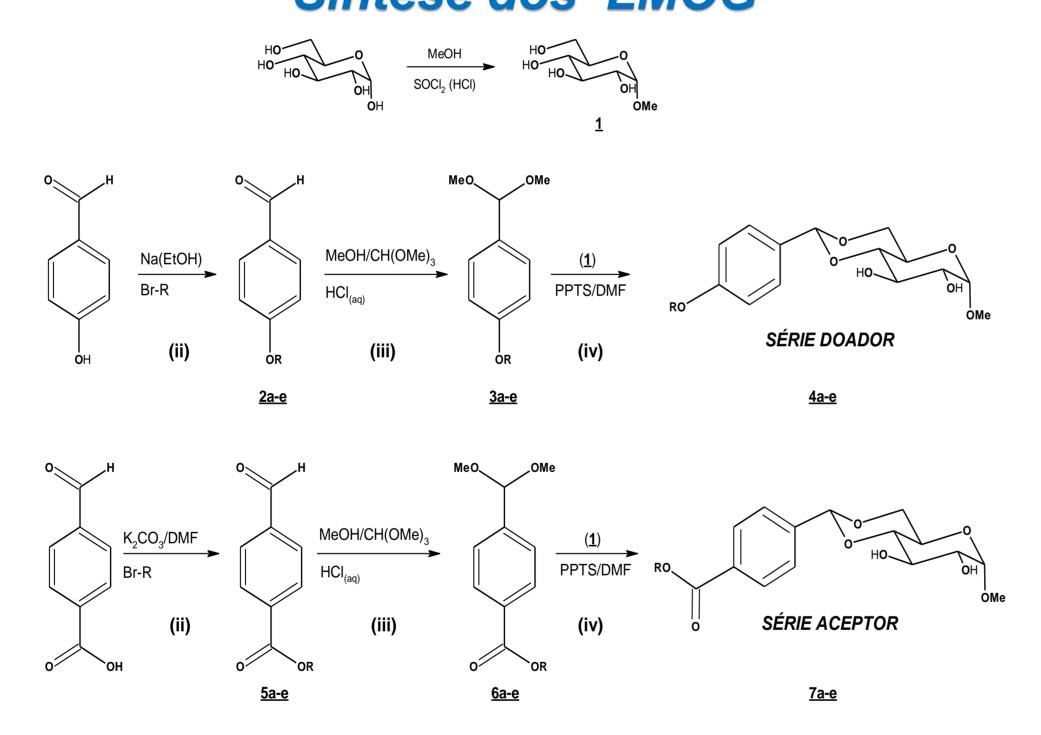


Figura 1. Modelo representativo de automontagem de um agente gelificante em uma rede 3D

Os LMOGs atraem interesse acadêmico e industrial devido a sua ampla aplicabilidade como, por exemplo, na criação de materiais nanoestruturados de sílica 1 e no encapsulamento de fármacos. $^{2-3}$ Neste trabalho destacamos a síntese de duas séries de compostos com diferentes densidades eletrônicas no anel aromático de benzilidenoglicopiranosídeos: uma deficiente em elétrons (n-alcoxicarboxilados) e a outra rica em elétrons (n-alcoxilados). A extensão da cadeia hidrofílica (n) variou entre 2 e 16 átomos de carbono (com n = 2, 3, 4, 8 ou 16) e a caracterização dos géis formados por estes compostos em diversos solventes orgânicos empregou técnicas como a MEV, o IV-TF, o dicroísmo circular (CD) e a DSC.

Resultados e Discussão

Síntese dos LMOG

 $R = C_n H_{2n+1}$ (n= 2, 3, 4, 8 e 16) = (a-e)

Figura 2. Rota sintética dos LMOG com grupos aceptores e doadores de densidade eletrônica no anele aromático de benzilidenoglicopiranosídeos (**4a-e** e **7 a-e**).

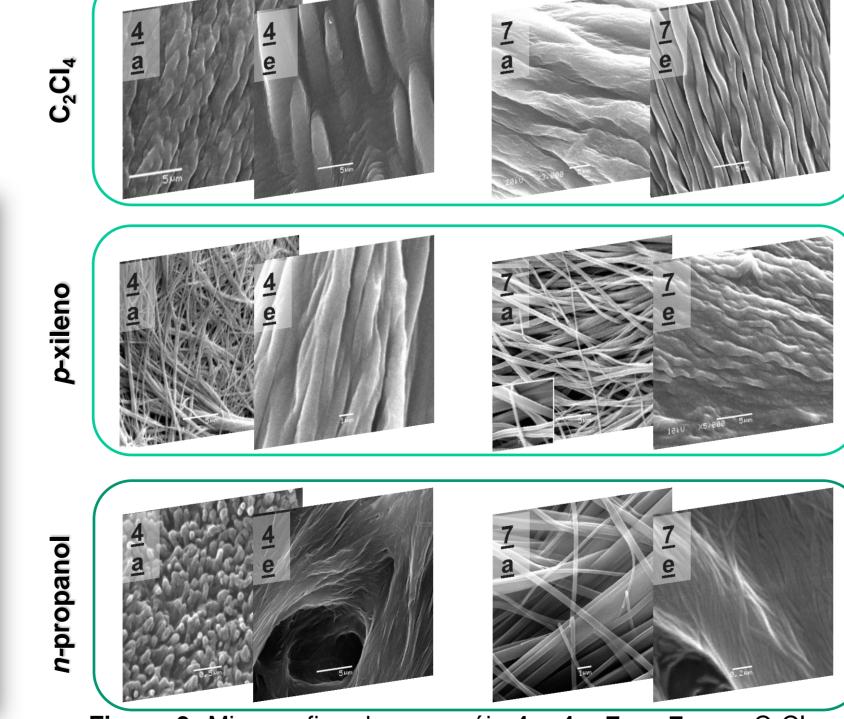

Ensaio de gelificação

Tabela 1. Ensaio de gelificação dos compostos em diferentes solventes orgânicos nas concentrações de 1-5 (10⁻² g/mL).

(10 ⁻² g/mL).																
Solvente			DMSO	Metanol	1-Propanol	1-Butanol	Acetona	Diclorometano	Tetracloroetileno	Tetraclometano	Nitrobenzeno	Benzeno	Tolueno	p-Xileno	Dodecano	Heptano
D O A D O R A C E P T O R	<u>4a</u>	C_2	S 1-5	S 1-5	P 1-5	P 1-5	S 1-5	S 1-5	P _{ps}	I 1-5	S 1-5	I 1-5	P _{ps}	P _{ps}	I 1-5	I 1-5
	<u>4b</u>	C ₃	S 1-5	S 1-5	G 4-5	G 4-5	S 1-5	S 1-5	G	I 1-5	S 1-5	G 3	Pps 1	G 1-3	I 1-5	I 1- 5
	<u>4c</u>	C_4	S 1-5	S 1-5	G 5	G 4-5	S 1-5	S 1-5	G 1-3	G 1-5	S 1-5	G 3-5	G 1-3	G 1-5	I 1-5	I 1-5
	<u>4d</u>	C ₈	S 1-5	S 1-5	G 4-5	G 5	S 1-5	S 1-5	G 1-5	G 1-5	S 1-5	G 3-5	G 1-3	G 1-5	G	G
	<u>4e</u>	C ₁₆	G 2-5	S 1-5	G 3-5	G 3-5	S 1-5	S 1-5	G 1-5	G 1-5	S 1-5	G 1-5	G 1-5	G 1-5	G 1-5	G 1-5
	<u>7a</u>	C_2	S 1-5	S 1-5	P 2-5	P 2-5	S 1-5	I 2-5	I 1-5	I 1-5	S 1-5	I 1-5	I 1-5	P 2-5	I 1-5	I 1-5
	<u>7b</u>	C_3	S 1-5	S 1-5	G 4-5	G 4-5	S 1-5	S 1-5	G 1-2	I 1-5	S 1-5	G 3-5	G 1-2	G 4-5	I 1-5	I 1-5
	<u>7c</u>	C_4	S 1-5	S 1-5	G 4-5	G 3-5	S 1-5	S 1-5	G 1-5	G 1-5	S 1-5	G 3-5	G 1-5	G 1-5	G 1-5	G 1-5
	<u>7d</u>	C_8	S 1-5	S 1-5	G 3-5	G 3-5	S 1-5	S 1-5	G 1-5	G 1-5	S 1-5	G 1-5	G 1-5	G 1-5	G 1-5	G 1-5
	<u>7e</u>	C ₁₆	G 2-5	G 1-5	G 2-5	G 3-5	G 2-5	S 1-5	G 1-5	G 1-5	S 1-5	G 1-5	G 1-5	G 1-5	G 1-5	G 1-5

Faixa de concentração encontrada entre 1 a 5 10-2g/mL para classificar o comportamento dos agentes gelificantes. G gel, P precipitado, P_s precipitado autosuportado, P_s precipitado parcialmente auto-suportado, S solúvel e I insolúvel.

MEV

Figura 3. Micrografias dos xerogéis <u>4a</u>, <u>4e</u>, <u>7a</u> e <u>7e</u> em C₂Cl₄, *p*-xileno e *n*-propanol. Aumento de 10³-10⁴x com fibras de 0,2-1mm de diâmetro.

Dicroismo circular Dicroismo circular Topeop ejugo Tope

-▲-d

Concentração (mmol/dm³)

Figura 6. Curvas da T_{gel} obtidos a partir do DSC para os organogéis <u>4c-e</u> e <u>7c-e</u> em C₂Cl₄ e *p*-xileno em diferentes

concentrações molares.

Conclusões

Os agentes gelificantes com substituintes *n*-alcoxicarbonil apresentam uma melhor capacidade de gelificação do que os análogos com grupos *n*-alcoxil. O aumento da cadeia carbônica afetou significativamente na habilidade de enrijecimento de solventes. A MEV permitiu estimar os tamanhos dos raios formados no estado xerogel (0,2-1 μ m) e suas morfologias, cilíndricas. Com o IV foi possível observar que a agregação gelificante-gelificante se dá por ligação hidrogênio. Através do CD foi evidenciada a formação de nanofibras com elipticidades distintas em relação as duas séries de gelificantes. A T_{gel} aumentou com a concentração dos LMOGs e reduziu com o aumento da cadeia carbônica dos grupos substituintes.

Referências

- (1) Vintiloiu, A.; Leroux. J. C. *J. Control. Release.* **2008**, 125, 179.
- (2) Jung, J. H.; Amaike, M.; Shinkai, S. J. Chem. Commun. 2000, 2343.
 (3) Zhou, Y.; Xu, M.; Yi, T.; Xiao, S.; Zhou, Z.; Li, F.; Huang, C. Langmuir, 2007, 23, 202.

Agradecimentos

aceptor

7/p-xileno

