AMPLITUDE DE ESPALHAMENTO ELÁSTICO FRONTAL PRÓTON-PRÓTON E ANTIPRÓTON-PRÓTON EM ALTAS ENERGIAS

Pedro Simoni Pasquini (pasquini@ifi.unicamp.br) Márcio José Menon (menon@ifi.unicamp.br

Departamento de Raios Cósmicos e Cronologia (DRCC) INSTITUTO DE FÍSICA GLEB WATAGHIN UNIVERSIDADE ESTADUAL DE CAMPINAS (Unicamp) PIBIC/CNPq/Unicamp-Quota 2010/2011 Palavras-Chave: interações hadrônicas - altas energias

Resumo

Com a entrada em operação do Grande Colisor de Hádrons (LHC) são grandes as expectativas sobre os novos desenvolvimentos teóricos na área de Física de Partículas e Campos. As colisões hadrônicas, elásticas próton-próton (pp) e antipróton-próton (pp) têm papel fundamental no processo de síntese de conhecimento na área de Cromodinâmica Quântica (QCD). Neste trabalho, desenvolve-se um estudo empírico das amplitudes de espalhamento frontais pp e pp, obtendo-se parametrizações empíricas para: (a) partes real e imaginária em funçao da energia; (b) parte imaginária em função da parte real.

1. Introdução

O estudo sobre as colisões próton-próton (pp) e antipróton-próton $(p\bar{p})$ foi feita a partir de algumas hipóteses que simplificam o problema, de tal forma a tornar possível uma análise inicial das amplitudes de espalhamentos frontais em altas energias, utilizando-se de dados fornecidos pelo Particle Data Group [1]. A análise envolve a extração empírica da amplitude de espalhamento frontal em termos da energia e determinação da parte imaginária em função da parte real da amplitude de espalhamento.

2. Metodologia Utilizada

2.1 Amplitude de Espalhamento

Com os dados fornecidos pelo Particle Data Group da seção de choque total e do parâmetro ρ , determinou-se da parte real e imaginária da amplitude de espalhamento frontal, utilizando as equações

> $Im[A(s,t=0)] = rac{\sigma_{tot}}{4\pi}$ (1), $Re[A(s, t = 0)] = \rho Im[A(s, t = 0)]$ (2),

com o respectivo erro associado.

2.2 Plano Complexo da Amplitude Frontal

Com os dados calculados para as partes real e imaginária, o último passo a ser dado é o estudo do plano complexo da amplitude de espalhamento. A ideia inicial para efetuar tal estudo é utilizar os dados obtidos na seção anterior e analisar o ajuste de uma função. A figura (3) mostra os pontos extraídos dos dados experimentais.

-0.4 Fig. 4b Fig.4 Resultados dos ajustes através da parametrização eq.(5) para colisões pp e

• pp

- ajuste da colisao pp

ajuste da colisao pp

3. Discussão dos Resultados

Da fig.4, o crescimento da função é bastante acentuado e levanta a questão da existência de um ponto de saturação. Outro aspecto importante é a semelhança entre o crescimento das duas curvas na figura (4) para $A_i > 0.6$ que é a região com dados de mais alta energia fornecidos. Isso poderia indicar que, embora a seção de choque cresça de maneira diferente para as duas colisões, a relação

Neste caso utilizou-se, inicialmente, todos os dados experimentais disponíveis da região $\sqrt{s} > 1.8$ GeV (limiar do espalhamento). Com base nos pontos empíricos, foram testadas várias funções, sendo os melhores resultados obtidos com parametrizações do tipo

 $f(s) = a_1 [\frac{s}{s_0}]^{-b_1} + a_2 [\frac{s}{s_0}]^{b_2} + a_3 ln \frac{s}{s_0} + a_4 ln^2 \frac{s}{s_0}$ (3),

onde, $s_0 = 1 \text{GeV}^2$, a_i , i = 1, 2, 3, 4 e $b_i > 0$, i = 1, 2 são parâmetros livres. Essa função é inspirada em formalismos de Regge [2]. Como há o interesse na região de altas energias consideramos apenas a região de variação monotônica, efetuando um corte em 5 GeV. Vemos, nas figuras (1) e (2) que os resultados apresentam boas descrições visuais e estatísticas dos pontos empíricos.

Fig. 1a Fig. 1b Fig.1 Espalhamento pp: partes imaginária (a) e real (b) da amplitude de espal-

hamento frontal em função da energia.

Fig. 3b Fig.3 Pontos extraídos no plano complexo da amplitude de espalhamento frontal para colisões pp (a) e $p\bar{p}$ (b). A linha vertical separa o primeiro quadrante e o segundo quadrante.

Como o interesse da análise é a região de altas energias, onde o comportamento da curva é monotônico, considerou-se um corte em 5 GeV. Foram testados polinômios de diferentes graus, obtendo-se o melhor ajuste para grau 3.

Especificamente, denotando:

 $ReA \equiv A_r$ $ImA \equiv A_i$ (4),

foi considerada a seguinte parametrização para $A_i(A_r)$:

 $A_i = a_0 + a_1 A_r + a_2 A_r^2 + a_3 A_r^3$ (5),

onde a_i , i = 0, 1, 2, 3 são parâmetros livres. Os resultados para

entre a parte real e imaginária da função amplitude de espalhamento não seja tão diferente assim.

	a 0	a_1	a 2	a 3	g.d.l	$\chi^2/g.d.$
pp	3.09	0.419	1.92	3.01	7	4.73
	± 0.069	± 0.057	±0.13	±0.77		
р p	3.38	-0.34	-1.25	7.19	4	8.35
	± 0.015	± 0.34	± 1.4	± 1.3		

Tabela 1. Resultados dos ajustes de ImA em termos de ReA através da parametrização (5), separadamente para pp e $p\bar{p}$

4. Conclusão

O estudo empírico da seção de choque total mostra um crescimento diferenciado entre os dois tipos de colisões, $pp \in p\overline{p}$, mostrando que há um crescimento da ordem de $ln^2(s)$ para a colisão pp, em altas energias, enquanto para $p\bar{p}$ o crescimento é em torno de ln(s). Tal diferença no entanto, não aparece no correlacionamento das partes reais e imaginárias da amplitude de espalhamento. Uma análise mais relevante, porém, só é possível com mais dados experimentais em altas energias, que devem ser fornecidos pelo acelerador LHC, ainda em 2011.

5. Referências

- [1] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010), http://pdg.lbl.gov/
- [2] V. Barone, E. Predazzi, High-Energy Particle Diffraction (Spring-Verlag, Berlin, 2002).

as colisões $pp \in p\bar{p}$ são apresentados na figura (4). Neste caso

considerou-se apenas os erros em ImA. Os resultados dos ajustes

