

SÍNTESE DE NANOPARTÍCULAS DE CeO₂ DE TAMANHO CONTROLADO SUPORTADAS NOS POROS DA SBA-15

Murilo Pastorello Pereira (Bolsista PIBIC/CNPq), Juliana Martins de Souza e Silva e Prof. Dr. Italo Odone Mazali⁴ Laboratório de Materiais Funcionais – Instituto de Química – Universidade Estadual de Campinas – UNICAMP Campinas, São Paulo, Brasil, C.P 6154, CEP 13083-970 *mazali@iqm.unicamp.br

Aumentando número de CID: modo

Raman T_{2g} desloca-se para

frequências menores, torna-se mais

estreito e mais intenso

CeO, está sob regime nanométrico e

aumenta de tamanho após cada CID

(como também indicado pelas

variações observadas na banda

proibida)

Amostras de SBA-15/xCeO₂ exibiram perfis de adsorção-dessorção de N₂

típicos da SBA-15: → Isotermas tipo IV

→ Histerese tipo H1

A SBA-15/xCeO₂ possui canais de

poros cilíndricos bem definidos

Não ocorre obstrução

dos poros com os CID

Introdução

Nas últimas décadas, materiais à base de CeO₂ têm sido intensamente estudados principalmente por participarem de reações catalíticas, como oxidação de CO e hidrocarbonetos,^{1,2} e reforma a vapor.³ Na "química verde", a céria tem recebido grande atenção por atuar como promotora em catalisadores de três vias, reduzindo as emissões nocivas de escapamentos de automóveis. Devido à sua capacidade de absorver e liberar oxigênio durante o fluxo oscilante de ar/combustível em motores a compressão, o CeO₂ favorece a redução da emissão de gases gerados na combustão incompleta em automóveis, pela sua conversão em substâncias menos poluentes. Neste contexto, o uso de céria nanométrica suportada em uma matriz tem se mostrado uma estratégia adequada para melhorar sua estabilidade térmica e atividade. Neste trabalho, são reportadas a síntese e a caracterização de nanopartículas de CeO₂ com tamanho variável, dispersas em uma estrutura de sílica com mesoporos hexagonais bem organizados (SBA-15).

Palavras chave: nanoestruturação – mesoporoso – CeO₂

Procedimento Experimental

→SBA-15 foi sintetizada de acordo com procedimento descrito na literatura.⁴

→CeO₂ suportado na SBA-15 foi preparado por ciclos de impregnação-decomposição (CID):

Resultados e Discussão

DRX de SBA-15/xCeO₂ com x = 1, 3, 5, 7 ou 10.

Picos típicos de SAXS de estrutura hexagonal bidimensional *P6mm* com um arranjo hexagonal bem ordenado e estrutura unidimensional de canais

A estrutura da SBA-15 é preservada depois de vários CID

Deslocamento de picos para maiores valores de q e redução em a₀ são observados com os CID e sugerem contração da estrutura de silica 50 60 Aumento da proporção CeO₂/ SiO₂ com aumento do número de CID

CeO, fluorita

com grupo espacial Fm3m

JCPDS 34-0394

Intensidade dos picos de

difração relacionada com o aumento do CeO₂ conforme aumento do número de CID

0,5 1 1,5 2 q (nm⁻¹)

SAXS de SBA-15 antes e depois de sucessivos CID com 2etilexanoato de cério (II).

Espectros Raman da SBA-15 pura e de SBA-15/xCeO₂ com x = 1, 3, 5, 7 ou 10.

lsotermas de adsorção-dessorção de N_2 da SBA-15/xCeO₂ com x = 1, 3, 5, 7 ou 10.

Após sucessivos CID: - Adsorção menos íngreme e histerese mais larga - Redução de S_{BET}, /**p** e Dp

- → CeO₂ nanométrico suportado nos mesoporos da SBA-15 foi preparado por metodologia CID.
- ➔ A variação do número de CID permite:
 - controlar o tamanho das nanopartículas de CeO₂
 - variar a largura da banda proibida do CeO₂
 - controlar o volume total de poros, área superficial e diâmetro médio

de poros da SBA-15 Referências

¹ H.F.Li *et al* Catal. Letters, 141 (2011) 452. ³ A. Laobuthee *et al*, Catal. Commun., 12 (2010) 25. ² X.N. Wu, *et al* Phys. Chem. Chem. Phys., 12 (2010) 3984. ⁴ D.Y. Zhao *et al* , Science, 279 (1998) 548.

