

ATIVIDADE ANTIMICROBIANA DA PRÓPOLIS VERMELHA CONTRA PATÓGENOS ENDODÔNTICOS

VITTI BV*, OLIVEIRA ACMI, SILVA BB, ROSALEN PL, GOMES BPFA Faculdade de Odontologia de Piracicaba ENDODONTIA - FOP - UNICAMP

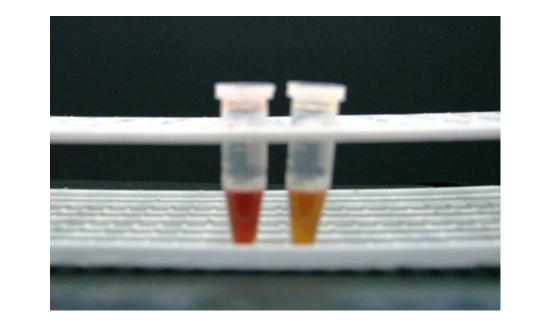
INTRODUÇÃO

A própolis é encontrada em exsudatos resinosos de abelhas Apis mellifera e brotos de plantas e vem sendo utilizada como opção na terapia médica e odontológica, devido às suas atividades antibacteriana, antifúngica, antitumoral e antiinflamatória. Entretanto, não há relatos na literatura em relação à atividade da própolis brasileira tipo 13 (própolis vermelha) contra microrganismos relacionados à etiologia das infecções endodônticas.

OBJETIVO

O objetivo deste estudo foi avaliar a eficiência da própolis vermelha contra patógenos endodônticos pelo método de diluição em caldo, comparando seus resultados aos de outras substâncias antimicrobianas utilizadas em Endodontia atualmente.

MATERIAL E MÉTODOS


1. SUBSTÂNCIAS TESTADAS

- Grupo experimental: Extrato etanóico de Própolis Vermelha (EEP)
- Grupo controle negativo: Solução salina estéril 0,85% Álcool 80%
- Grupo controle positivo: EDTA 17%

Gluconato de clorexidina gel 2% Hipoclorito de sódio 2,5% Hipoclorito de sódio 5,25%

2. MICRORGANISMOS TESTADOS

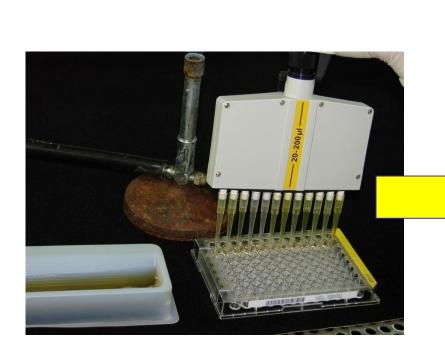
Os microrganismos foram reativados a partir de culturas estoque em meio BHI líquido por 18-24 h a 37°C, 10% CO₂ e posteriormente cultivados em BHI ágar. Após crescimento microbiano, colônias individuais foram removidas com auxílio de alça de platina e suspendidas em solução de NaCl 0,9% estéril. Após homogeneização, suspensões microbianas foram ajustadas para o valor de absorbância de 0,135 a 660 nm em espectrofotômetro, o que equivale a 1-2 x 10⁸ UFC/mL.

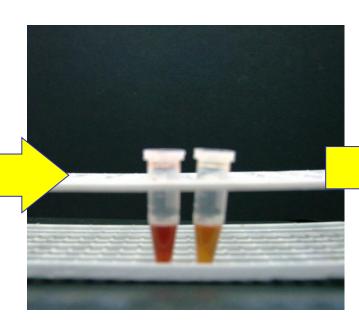
Aeróbios: Candida albicans (ATCC 62342)

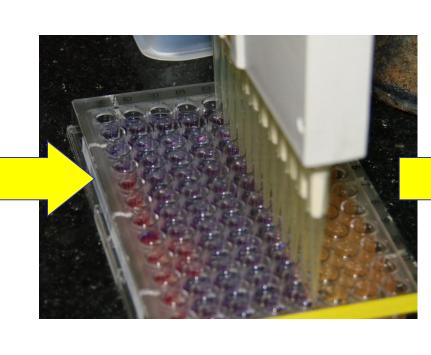
Enterococcus faecalis (ATCC 29212 e selvagem)

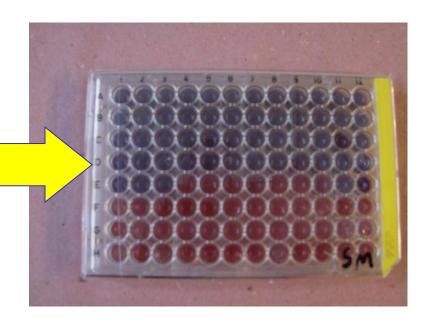
Staphylococcus aureus (ATCC 25923)

Escherichia coli (ATCC 25922)

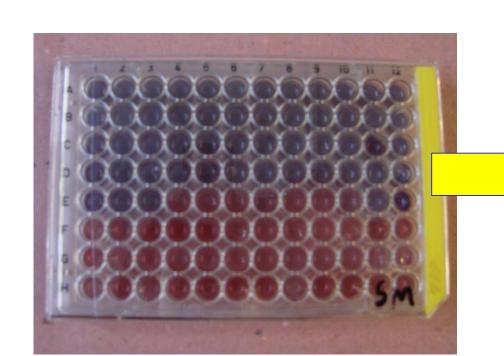

3. DETERMINAÇÃO DA CONCENTRAÇÃO INIBITÓRIA MÍNIMA (CIM)

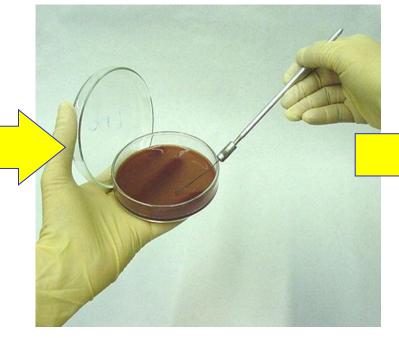

190μL de BHI + suspensão microbiana 1-2 x 10⁸ UFC/mL

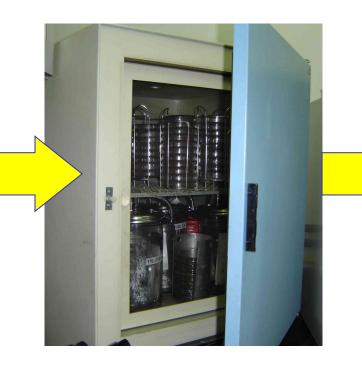

10μl EEP (8 - 3200 μg/mL) e controle (80% etanol, v/v)

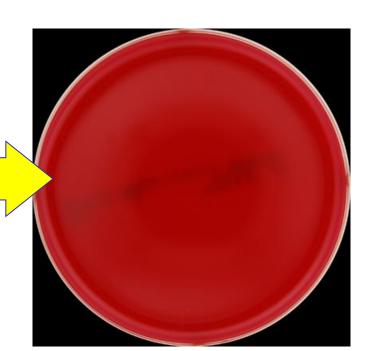

18 h, 37°C, 10% CO₂, inoculação do corante resazurina

CIM: menor concentração de EEP onde não há alteração de cor

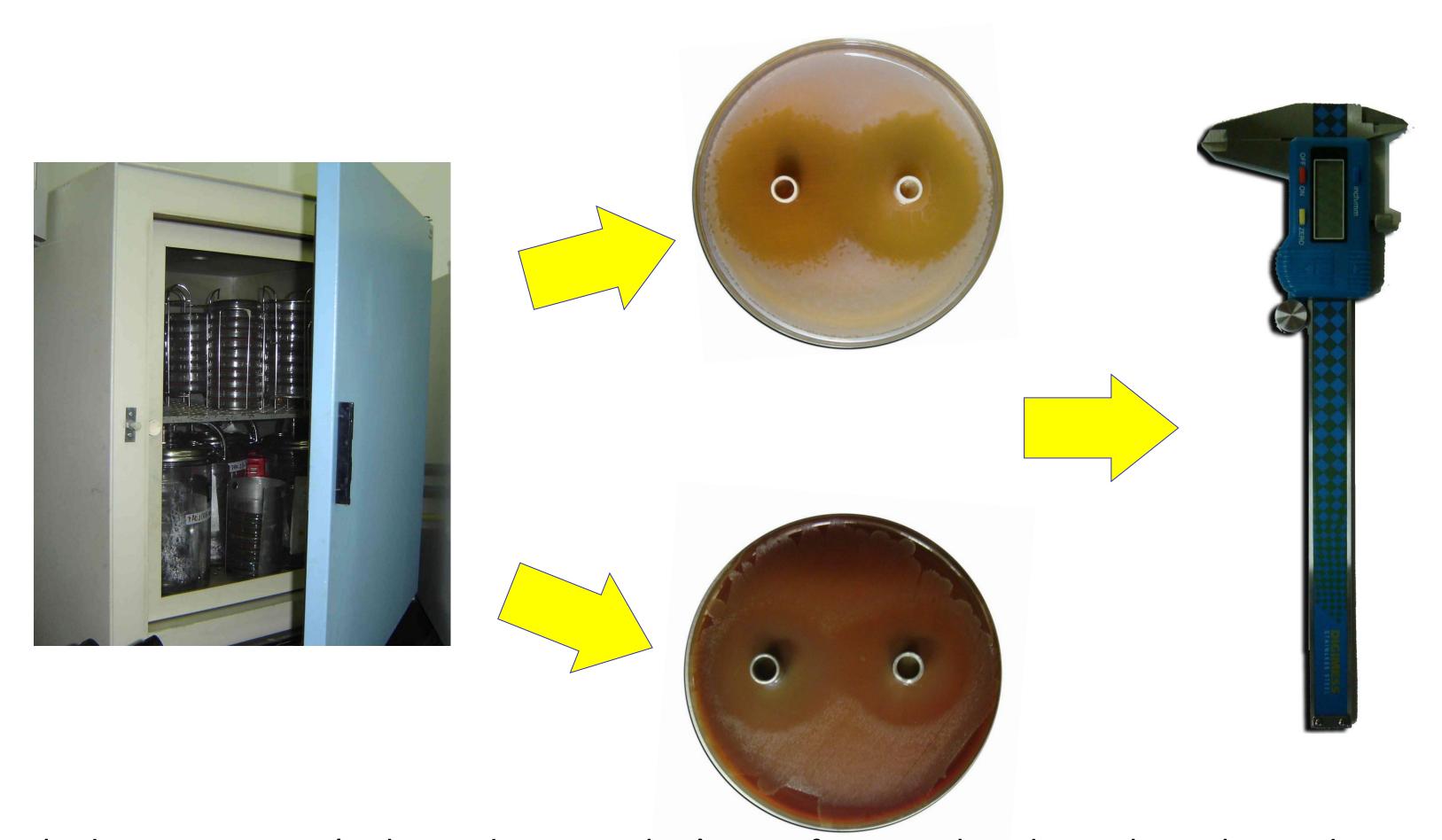



4. DETERMINAÇÃO DA CONCENTRAÇÃO BACTERICIDA/FUNGICIDA MÍNIMA (CBM/CFM)


Poços com ausência de crescimento (СІМ)


Inoculação em BHI agar

CBM: menor 18h, 37°C, 10% CO₂ ausência de crescimento concentração com



5. MÉTODO DE DIFUSÃO EM ÁGAR

Cilindros com a Própolis e demais substâncias foram colocados sobre placas de Petri contendo meio de cultura sólido BHI, onde foi semeado o microrganismo. Observação da formação do halo de inibição após incubação e realizada medida com paquímetro. digital

RESULTADOS

Tabela 1: CIM e CBM/CFM da própolis vermelha em relação aos microrganismos testados.

EEP Própolis Vermelha			
Microrganismo	CIM (µg/ml)	CBM (μg/ml)	
C. albicans (ATCC)	<25	200-400	
E. coli (ATCC)	50-100	200-400	
E. faecalis (ATCC)	50-100	400-800	
E. faecalis (Selvagem)	50-100	400-800	
S. aureus (ATCC)	25-50	200-400	

Tabela 2: Leitura do halo de inibição (mm) dos microrganismos testados.

	E. faecalis	S. aureus	C. albicans
CHX 2% Gel	6,00 a,b	7,14 a,b	5,63 b
	$(\pm 1,70)$	$(\pm 1,97)$	$(\pm 2,20)$
EDTA 17%	8,39 a	9,01 a	13,74 a
	$(\pm 1,45)$	$(\pm 1,19)$	$(\pm 0,59)$
Etanol 80	0,00 c	0,00 c	0,00 c
	(± 0.00)	(± 0.00)	(± 0.00)
NaOCl 2,5%	4,91 b	5,27 b	2,31 b
	(± 0.28)	$(\pm 1,58)$	(± 0.49)
NaOCI 5,25%	5,67 a,b	3,86 b	6,22 b
	(± 0.58)	(± 0.58)	(±1,33)
Própolis	0,00 c	0,00 c	0,00 c
	(± 0.00)	$(\pm 0,00)$	(± 0.00)
Soro Fisiológico	0,00 c	0,00 c	0,00 c
	(± 0.00)	(± 0.00)	(± 0.00)

^{*}Verticalmente, os resultados que não possuem letras não são estatisticamente diferentes; letras diferentes significam resultados estatisticamente diferentes, enquanto letras iguais significam que não houve diferença estatística entre os resultados.

CONCLUSÃO

- A própolis vermelha apresentou atividade antimicrobiana contra todos os microrganismos avaliados.
- Para *E. faecalis*, as substâncias EDTA 17%, CHX gel 2% e NaOCl 5,25% apresentaram maior atividade antimicrobiana.
- Para *S. aureus*, as substâncias EDTA 17% e CHX gel 2% apresentaram maior atividade antimicrobiana.
- Para *C. albicans*, a substância EDTA 17% apresentou maior atividade antimicrobiana.

APOIO FINANCEIRO

