

Determinação de metóxido de sódio por método termométrico

Carlos A. Teixeira (IC), Flavio A. Bastos (PG), MatthieuTubino* (PQ) Instituto de Química - Universidade Estadual de Campinas Caixa Postal 6154, CEP: 13083-970, Campinas-SP

*tubino@iqm.unicamp.br

1. INTRODUÇÃO

O metóxido de sódio é uma base forte utilizada em uma série de reações, principalmente em sínteses orgânicas [1], de cunho industrial, como catalisador alcalino [2] tanto na produção de biodiesel, quanto em polimerização e isomerização e na indústria farmacêutica [3], na produção de vitaminas.

2. METODOLOGIA

As análises termométricas foram realizadas em um titulador termométrico da Metrohm, modelo Tritotherm 859[®], esquematizado na Figura 1.

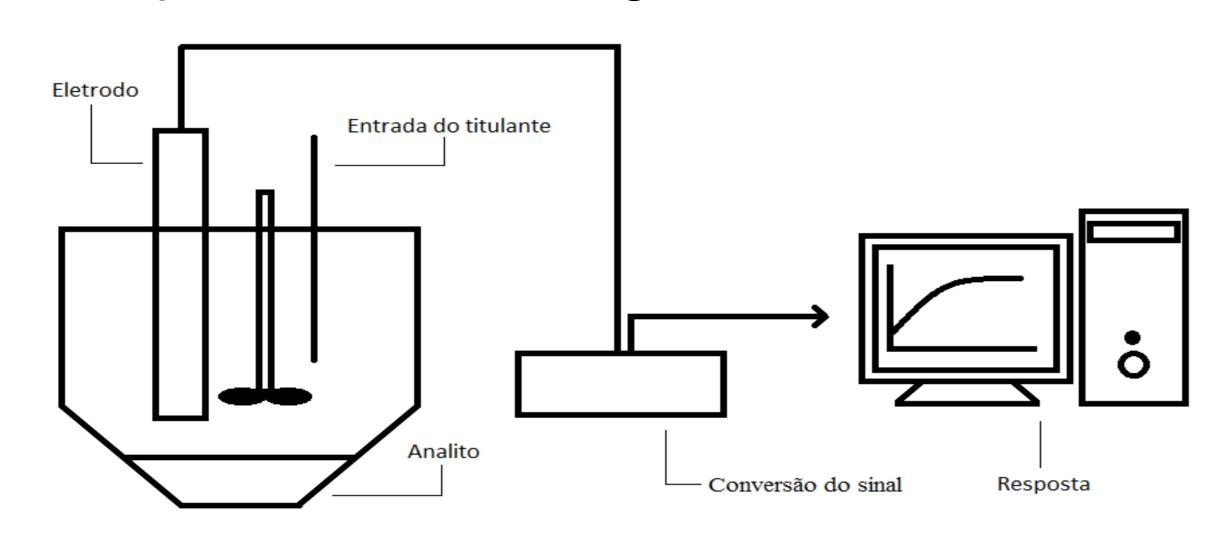


Fig. 1: Esquema geral do titulador termométrico da Metrohm[®], modelo Tritotherm 859[®]

Mediu-se o ΔT da interação entre o titulante, constituído de água deionizada em metanol (10% v/v), e o titulado, constituído de diferentes concentrações de metóxido de sódio em metanol (Figura 2).

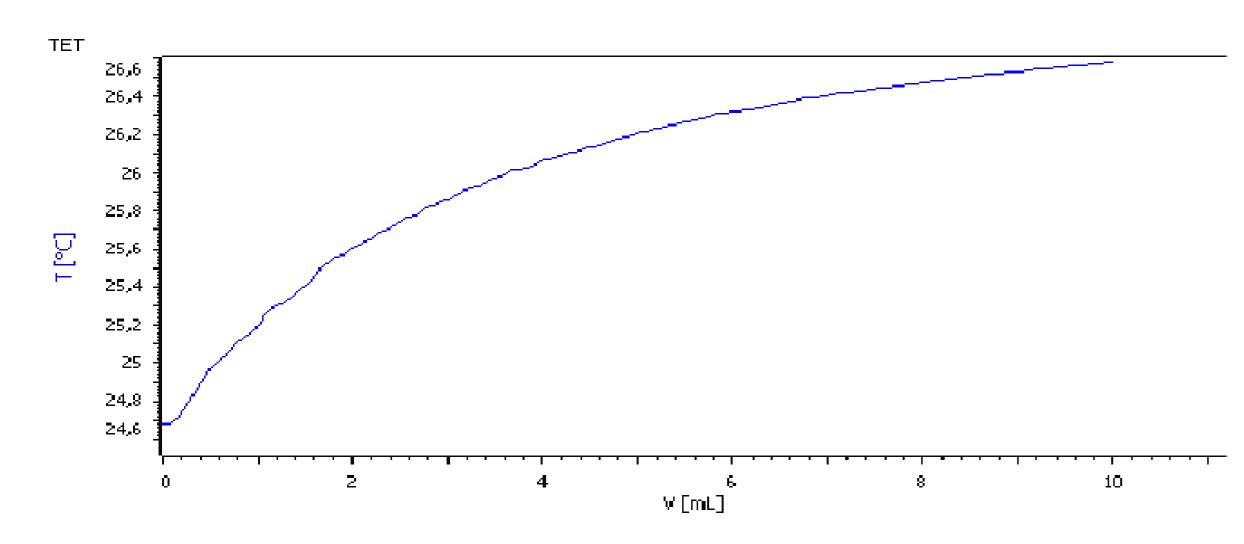


Fig. 2: Exemplo curva obtida pela titulação termométrica

3. RESULTADOS E DISCUSSÃO

Após a otimização de alguns parâmetros, como velocidade de adição, velocidade de agitação e concentração de água, construiu-se uma curva analítica, observando-se uma relação linear entre a raiz quadrada da variação de temperatura em função da concentração do metóxido de sódio analisado (Figura 3).

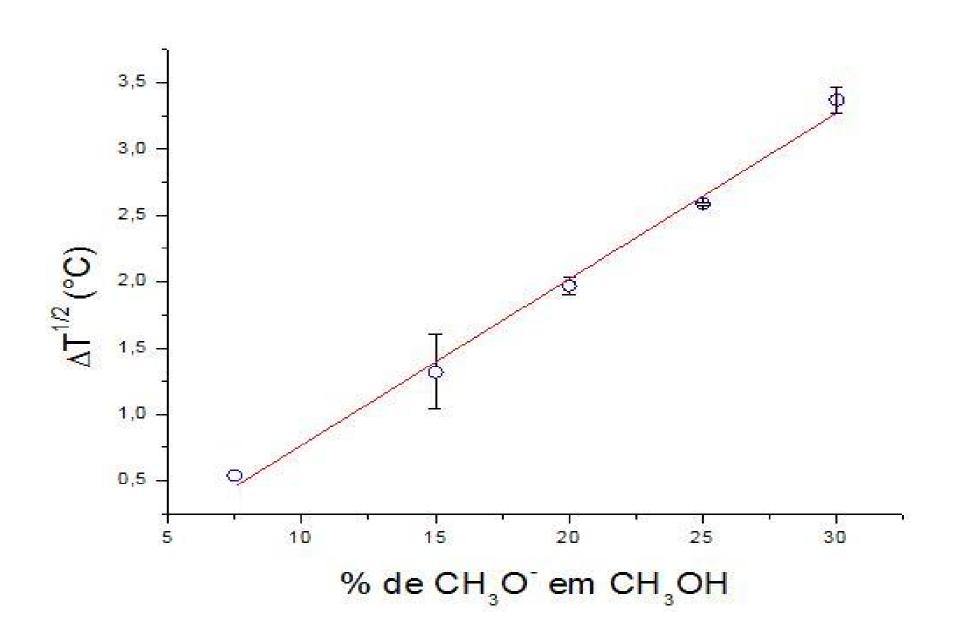


Figura. 3: Curva analítica: $\Delta T^{1/2}$ x [NaOCH₃].

A curva obtida na Figura 3 é descrita pela Equação 1:

$$\Delta T^{1/2}$$
= -0,48398 + 0,12523 C; R = 0,9923 (Eq. 1)

Foram preparadas soluções de NaOCH₃ em diferentes concentrações e os valores obtidos nas analises foram comparados aos esperados, conforme observado na Tabela 1.

Tabela 1: Valores esperados e obtidos por titulação termométrica.

•		•	•	
$[NaOCH_3] / \% (m/v)$	26,09	27,27	28,57	29,13
$\DeltaT_{m\'edio}$ / $^{\circ}C$	7,75	9,12	9,90	10,86
SD	0,10	0,01	0,03	0,14
[NaOCH3] _{calculada} / % (m/v)	26,09	27,98	28,99	30,18
Diferença absoluta / % (m/v)	0	0,71	0,42	1,05
Diferença relativa / %	0	2,6	1,47	3,6

4. CONCLUSÕES

Tendo em vista os resultados obtidos até o momento, pode-se concluir que o método é viável, devendo significar um avanço na resolução do problema.

5. REFERÊNCIAS

- ¹Chul, J. H.; Lin, P. S.; Wu, M. J., Organometallics, 2010, 29 (18), 4058.
- ² Puna, J. F.; Gomes, J. F.;,Correia, M. J. N.;; Fuel, 2010, 89 (11), 3602.
- ³ Ah, Y.; Choi, J.;,Choi, Y.; Ki, H; Bae, J; International Journal of Pharmaceutics, 2010, 385 (1-2), 12.

6. AGRADECIMENTOS

