CARACTERIZAÇÃO DE ESPONJAS DE TITÂNIO OBTIDAS POR SINTERIZAÇÃO SELETIVA A LASER

Bolsista : L.H.M. Rissi¹ Orientador : J.B. Fogagnolo¹ Co-autores: A.L. Jardini², R. Maciel Filho², E.S. Leva¹, R. Caram¹ ¹ Faculdade de Engenharia Mecânica, Unicamp, Campinas, SP, Brasil ² Faculdade de Engenharia Química, Unicamp, Campinas, SP, Brasil

Conselho Nacional de Desenvolvimento Científico e Tecnológico

UNICAMP

Palavras chave: Prototipagem rápida, biomateriais, metalurgia de pó, materiais porosos.

INTRODUÇÃO

O desenvolvimento de novas ligas de titânio com baixo módulo de elasticidade e de novos métodos de processamento para a obtenção de implantes ortopédicos com propriedades mecânicas próximas às do tecido ósseo humano têm tido grande importância e visibilidade na ciência de biomateriais. A alta rigidez dos implantes ortopédicos, incluindo o titânio e muitas das suas ligas, impede que o osso sustente cargas, causando a reabsorção óssea. Assim, é necessário buscar alternativas, como implantes ortopédicos com módulos de elasticidade menores e resistência mecânica e à fadiga suficientemente grandes. Peças de titânio com alta porosidade são uma alternativa para diminuir o módulo de elasticidade [1], além de permitir a integração óssea. A prototipagem rápida é uma técnica nova que permite a produção de implantes porosos personalizados. Neste trabalho, foi obtido, através da sinterização seletiva a laser [2], amostras cúbicas da liga Ti6Al4V com dois graus diferentes de porosidade. As peças foram caracterizadas por microscópio ótico e eletrônico. Ensaios de compressão foram realizados para determinar os módulos de elasticidade das amostras.

RESULTADOS

A Figura 4 mostra fotos das peças obtidas pela sinterização seletiva a laser, com 61% e 69% de porosidade. Já a Figura 5 mostra a estrutura observada com auxílio de um microscópio eletrônico. A superfície da estrutura indica que houve a completa fundição da matéria prima e a solidificação durante o processo, com muitas partículas de pó aderindo na superfície.

A microestrutura da amostra de 61% é mostrada na Figura 7. A estrutura observada é martensítica, devido à alta taxa de resfriamento experimentada pela peça.

METODOLOGIA

O material utilizado como matéria prima foi o pó atomizado da liga Ti6Al4V . A morfologia do pó pode ser vista na Figura 1, onde o tamanho da partícula é 28 μ m (D10), 45 μ m (D50) e 85 μ m (D90).

Figura 1 - Pó atomizado da liga Ti6Al4V

O equipamento é composto por um dispositivo a laser, um recipiente de pó, um espalhador e uma plataforma de trabalho. O laser atinge o leito de pó metálico, que se localiza sobre a plataforma de trabalho, de acordo com a programação feita através do CAD e a solidificação ocorre por resfriamento. Uma vez que a camada de pó é fundida e solidificada, uma próxima camada é espalhada e o processo é repetido até o término da fabricação da peça. O processo ocorre no leito de pó metálico, que suporta as características salientes da peça durante a fabricação. As amostras foram projetadas como cubos de 15 mm, com dois diferentes tipos de peças. A dimensão da estrutura foi mantida constante em 800 µm, variando o tamanho do poro para a obtenção de 61% e 69% de porosidade. Os modelos foram feitos de acordo com o trabalho de Jayanthi Parthasaranthy e co-autores [3]. A Figura 2 mostra os modelos confeccionados em CAD e a Figura 3 demonstra um esquema do equipamento de sinterização seletiva a laser.

61% de porosidade 69% de porosidade Figura 4 – Amostras obtidas por sinterização seletiva a laser

S D2,5 x250 300 um Figura 5 – Análise Superficial da 61% amostra com de porosidade

(NPa)

120 -

100 -

Através da Figura 6, é possível visualizar a parte interna da amostra com 61% de porosidade, usando uma amostra polida (superior) e outra atacada quimicamente (inferior). Pode-se observar a presença de pequenos poros nas estruturas. A causa de tal porosidade deve-se, provavelmente, à gases absorvidos durante o processo de fabricação e à solidificação do material. Também é possível notar que o ataque químico revelou uma textura na peça, que está relacionada com as camadas de laser depositadas sobre o material.

Figura 7 – Análise da microestrutura da amostra com 61% de porosidade

A Figura 8 mostra a curva de tensão-deformação, obtida através de ensaios de compressão, das peças com 61% e 69% de porosidade. A partir dessas curvas, foi determinado os módulos de elasticidade das amostras, conforme mostrado na Figura 9. Como esperado, a resistência à compressão e o módulo de elasticidade diminuem com o aumento do grau de porosidade. A resistência à compressão da material com 69% de porosidade está de acordo com os resultados publicados por Parthasarathy e co-autores [3]. Os autores fabricaram amostras similares através de um processo utilizando um feixe de elétrons para fundir a matéria-prima, chamado electron beam melting (EBM). Entretanto, os módulos de elasticidade das peças obtidas pela sinterização seletiva a laser foram significantemente maiores que os obtidos por EBM (2,3 e 2,9 GPa para 69% e 61% de porosidade, respectivamente).

da máquina de sinterização seletiva a laser

Todas as peças foram fabricadas com uma orientação de 45° em relação ao leito de pó e a largura de cada camada de pó foi 30 Figura 6 - Micrografias sem ataque químico (superior) e com ataque químico (inferior) da amostra com 61%

Deformação

Figura 8 - Tensão pela deformação das amostras com diferentes porosidades durante o ensaio de compressão

orientação, ao aluno de mestrado Edwin Sallica Leva, do Programa de

Figura 9 - Módulos de Elasticidade das amostras com diferentes porosidades

de porosidade	
REFERÊNCIAS BIBLIOGRÁFICAS	CONCLUSÃO
 YH. Li, LJ Rong, YYi Li, Compressive property of porous NiTi alloy synthesized by combustion synthesis, Journal of Alloys and Compounds, 345 (2002) 271-274 I. Gibson, L.K. Cheung, S.P. Chow, W.L. Cheung, S.L. Beh, M. Savalani, S.H. Lee, The use of rapid prototyping to assist medical 	A sinterização seletiva a laser produziu as peças porosas, porém porosidade foi constatada na estrutura interna das amostras. A fusão e solidificação completas durante o processo de fabricação é indicada pela superfície das peças. A microestrutura encontrada foi predominantemente martensítica. Pode-se observar também que a resistência à compressão e o módulo de elasticidade decrescem com o aumento da porosidade.
applications, Rapid Prototyping Journal, 12 (2006) 53-58	AGRADECIMENTOS
3. Jayanthi Parthasarathy, Binil Starly, Shivakumar Raman, Andy	Ao CNPq e ao PIBIC pela bolsa de iniciação científica, ao Prof. Dr. João Batista Fogagnolo pela oportunidade de trabalho e

Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), Journal of the Pós-graduação em Engenharia Mecânica da Unicamp, pela ajuda que Mechanical Behavior of Biomedical Materials, 3 (2010) 249-259

