

XIX Congresso Interno de Iniciação Científica da UNICAMP 26 a 27 de outubro de 2011

ANÁLISE DA VARIABILIDADE DO COEFICIENTE DE PERMEABILIDADE DE SOLO DE DIABÁSIO DA REGIÃO DE CAMPINAS E SEU EFEITO NO CÁLCULO DA PREVISÃO DE FLUXO SOB A FUNDAÇÃO DE BARRAGENS

Orientado: Luiz Gustavo Florian, Orientador Prof. Dr. David de Carvalho.

Palavras-chave: Permeabilidade – Barragem – Água

Tabela 1: Valores de K obtidos em laboratório e campo

Introdução

O conhecimento do valor da permeabilidade é importante na engenharia, principalmente, na estimativa da vazão que percolará através do maciço e da fundação de barragens de terra, em obras de drenagem, rebaixamento do nível d'água, adensamento, análise de recalques e estudo de estabilidade.

Na agricultura a permeabilidade do solo influi diretamente na escolha do tipo de cultura e na forma de manejo do solo.

Materiais e Métodos

Os dados de coeficiente de permeabilidade foram obtidos através da realização de ensaios de laboratório e campo e da compilação de dados já existentes, foram realizados análises estatísticas para determinação da variabilidade deste parâmetro nos primeiros 6 metros da camada de solo poroso de Diabásio presente no Campus da Unicamp.

<u>Lei de Darcy</u>

Q=K.A. (h1-h2)/L = K.A.i

Q – vazão ;

K – permeabilidade ;

A – secção atravessada;

h1 – carga hidráulica do piezômetro 1;

h2 – carga hidráulica do piezômetro 2;

L – distância entre os

piezômetros 1 e 2;

 – gradiente hidráulico ; Figura. Permeâmetro

Resultados e discussão

DROEINDIDADE (**)	77.4.1	ODE DE V(/-)	
PROFUNDIDADE (m) 0,5	VALORE DE K(cm/s) 4,2. 10 ⁻⁴		
0,5	9,1 . 10-4	Kv(laboratório)	
1,0	2,8. 10-3		
1,0	7,2. 10 ⁻³		
1,5	2,2. 10-3		
1,5	1,1. 10-4		
0,5	5,6. 10-4	K[n(laboratório)	
0,5	6.3. 10-3		
1,0	1,2. 10-3		
1,0	1.1. 10-4		
1,5	3,4. 10-3		
1,5	8,7. 10-3		
0,5	1,2 10-5		
0,5	2,4. 10-5		
1,0	6,2. 10-3	K(campo)	
1,0	3,6. 10-3		
1,5	0,7. 10-4		
1,5	-		

Kv = Coeficiente de Permeabilidade obtido com corpo de prova no sentido vertical Kh = Coeficiente de Permeabilidade obtido com corpo de prova no sentido horizontal Tabela 2: Secção 1

	Q = vazão		
Região	k1=1x10 ⁻⁵	k2=1x10 ⁻⁶	k3=1x10 ⁻⁷
1	6,6x10 ⁻⁶ m³/seg.m	7,8x10 ⁻⁷ m³/seg.m	7,2x10 ⁻⁸ m ³ /seg.m
1	0,570 m³/dia.m	0,067 m³/dia.m	0,006m³/dia.m
2	6,5x10 ⁻⁶ m³/seg.m	7,2x10 ⁻⁷ m³/seg.m	7,8x10 ⁻⁸ m ³ /seg.m
	0,561 m³/dia.m	0,062 m³/dia.m	0,007 m³/dia.m
3	6,2x10 ⁻⁶ m³/seg.m	7,3x10 ⁻⁸ m³/seg.m	7,9x10 ⁻⁸ m ³ /seg.m
	0,535 m³/dia.m	0,006 m³/dia.m	0,007 m³/dia.m

Tabela 3: Secção 2

	Q = vazão		
k1=1x10⁵	k2=1x10 ⁻⁶	k3=1x10 ⁻⁷	
8.1x10 ⁻⁶ m³/seg.m	9,6x10 ⁻⁷ m³/seg.m	9,7x10 ⁻⁸ m³/seg.m	
0,670 m³/dia.m	0,083 m³/dia.m	0,008 m³/dia.m	
8.1x10 ⁻⁶ m³/seg.m	9,9x10 ⁻⁷ m ³ /seg.m	1,2x10 ⁻⁷ m ³ /seg.m	
0,670 m³/dia.m	0,086 m³/dia.m	0,010 m³/dia.m	
6,9x10 ⁻⁶ m³/seg.m	3,5x10 ⁻⁷ m ³ /seg.m	6,3x10 ⁻⁹ m ³ /seg.m	
0,596 m³/dia.m	0,030 m³/dia.m	0,001 m³/dia.m	
	8.1x10 ⁻⁶ m³/seg.m 0,670 m³/dia.m 8.1x10 ⁻⁶ m³/seg.m 0,670 m³/dia.m 6,9x10 ⁻⁶ m³/seg.m	k1=1x10 ⁻⁶ 8.1x10 ⁻⁶ m³/seg.m 9,6x10 ⁻⁷ m³/seg.m 0,670 m³/dia.m 0,083 m³/dia.m 8.1x10 ⁻⁶ m³/seg.m 9,9x10 ⁻⁷ m³/seg.m 0,670 m³/dia.m 0,086 m³/dia.m 6,9x10 ⁻⁶ m³/seg.m 3,5x10 ⁻⁷ m³/seg.m	

Tabela 4:	Secção 3
-----------	----------

Tabela 4: Secção 3					
	Q = vazão				
Região	k1=1x10 ⁻⁶	k2=1x10 ⁻⁶	k3=1x10 ⁻⁷		
1	9,4x10 ⁻⁶ m³/seg.m	1,2x10 ⁻⁶ m³/seg.m	1,1x10 ⁻⁷ m³/seg.m		
	0,812 m³/dia.m	0,104 m³/dia.m	0,009 m³/dia.m		
2	9,3x10 ⁻⁶ m³/seg.m	1,2x10 ⁻⁶ m³/seg.m	1,2x10 ⁻⁷ m³/seg.m		
	0,803 m³/dia.m	0,104 m³/dia.m	0,010 m³/dia.m		
3	7,8x10 ⁻⁶ m³/seg.m	3,9x10 ⁻⁷ m³/seg.m	7,0x10 ⁻⁹ m³/seg.m		
	0,674 m³/dia.m	0,334 m³/dia.m	0,001 m³/dia.m		

-Secção Tipica da Barragem 1

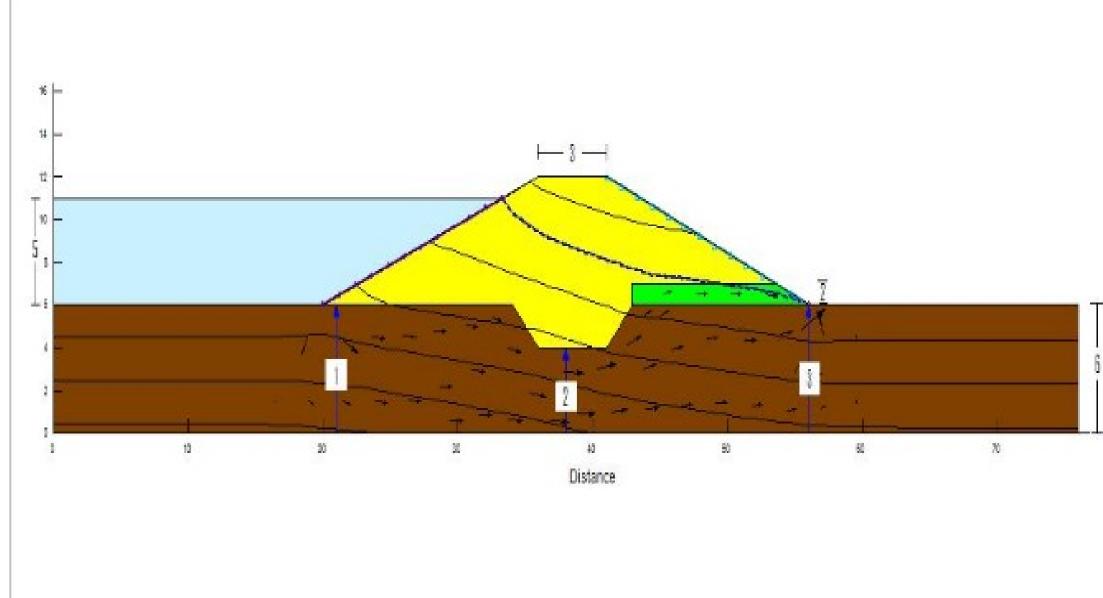


Figura 1. Locais da configuração onde foram determinadas as vazões (as setas indicam a região onde foi calculada a vazão) para a configuração acima.

-Secção Tipica da Barragem 2 +5-

Figura 2. Locais da configuração onde foram determinadas as vazões (as setas indicam a região onde foi calculada a vazão) para a configuração acima.

Secção Tipica da Barragem 3

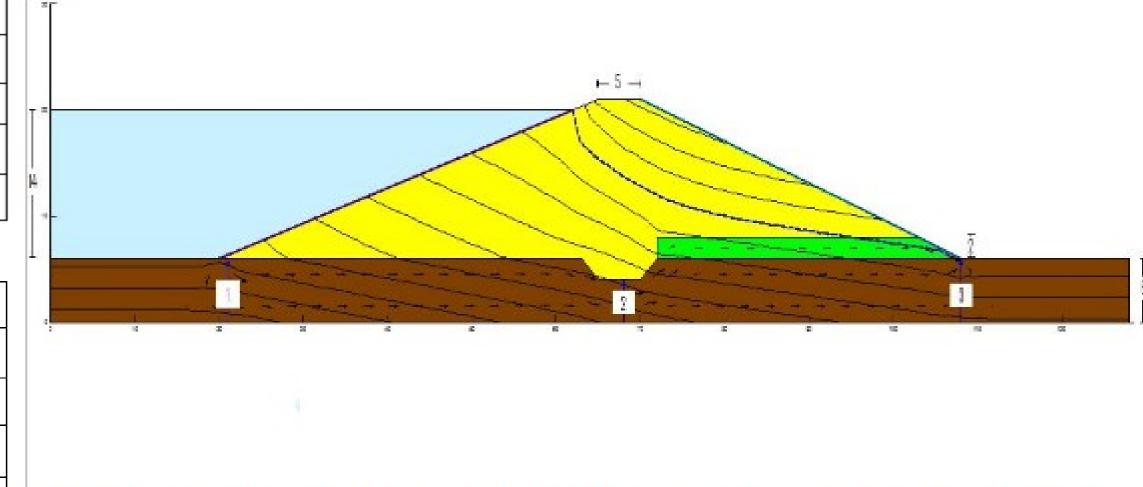


Figura 3. Locais da configuração onde foram determinadas as vazões (as setas indicam a região onde foi calculada a vazão) para a configuração acima.

Onde: 1= Porção de solo de fundação logo abaixo ao pé do talude de montante de espessura igual a 6m, 2= Porção de solo de fundação localizada no eixo da trincheira vedante de

espessura igual a 4m, 3= Porção de solo de fundação localizado logo abaixo do pé de jusante da configuração de espessura igual a 6m. Os valores da cotas apresentadas no desenho são dados em metro (m).

Conclusões

- Valores de K:

Os valores variam de 8,7x10-3 até 2,4x10-5 indicando a variabilidade do solo. Esta variação deve ser considerada no projeto, devendo ser adotado um fator de segurança adequado. O valor médio foi de 0,00338cm/s e o desvio padrão 0,00347.

- Fluxo no Centro da Barragem:

Os valores de fluxo aumentam com altura da barragem.

Para as barragens de 6m, 10m, 15m os valores médios de fluxo no centro da barragem obtidos foram de 0,21 m³/dia.m - 0,25 m³/dia.m - 0,31 m³/dia.m .

Se estes valores forem significativos para a situação do reservatório, medidas de prevenção de tapete impermeável à montante e cortina de injeção sobre a barragem.

