

SUBSTITUIÇÃO DE LIGANTES AQUA DO COMPLEXO [Eu(tta)3(H2O)2] PELO LIGANTE p-AMINOBENZOATO

Cecília H. F. Zulato (IC)*, Ernesto R. Souza (PG), Ítalo O. Mazali (PQ), Fernando A. Sigoli (PQ)

Laboratório de Materiais Funcionais - LMF - INSTITUTO DE QUÍMICA, Universidade Estadual de Campinas, CEP 13083-970, Campinas, SP

E-mail: <u>ceciliazulato@gmail.com</u>

Agência financiadora: PIBIC/CNPq; Palavras chave: Európio-Complexos-Luminescência-p-aminobenzoato

Introdução

Alguns complexos β -dicetonatos de terras raras são conhecidos por sua elevada luminescência ⁽¹⁾. Entre eles se sobressai o complexo [Eu(tta)₃(H₂O)₂] que apresenta elevada luminescência de cor vermelha. No entanto, a luminescência deste complexo pode ser suprimida devido à acoplamentos vibracionais, no caso, devido à presença de osciladores O-H das moléculas de água. Assim, a substituição destes ligantes aqua pelo ácido p-aminobenzóico (Haba) visa eliminar estas rotas de supressão⁽²⁾, resultando em uma possível alteração na luminescência.

Procedimento experimental

O complexo precursor $[Eu(tta)_3(H_2O)_2]$ foi preparado a partir da neutralização de Htta com NaOH, em etanol, seguido da adição de EuCl₃ e água. Para a síntese do complexo Na[Eu(tta)_3(aba)], o Haba foi dissolvido em etanol contendo NaOH. A mistura foi colocada em refluxo e, em seguida, adicionou-se o complexo [Eu(tta)_3(H_2O)_2] lentamente. Após algumas horas de reação, a solução foi evaporada e o sólido restante foi recolhido, lavado com água e seco.

Figura 1. Estrutura do complexo [Eu(tta)₃(H₂O)₂].

Resultados e Discussão

Espectroscopia de fotoluminescência

Figura 2. Espectros de emissão dos complexos [Eu(tta)₃(H₂O)₂] e Na[Eu(tta)₃(aba)] obtido em temperatura ambiente.

Tempo de vida de emissão dos complexos

Figura 3. Curvas de decaimento da luminescência para os complexos [Eu(tta)₃(H₂O)₂] e Na[Eu(tta)₃(aba)] obtidas a temperatura ambiente.

Tabela 1. Parâmetros experimentais de emissão, tempos de vida, coeficientes de emissão e eficiências quânticas para os complexos [Eu(tta)₃(H₂O)₂] e Na[Eu(tta)₃(aba)].

			-					
Complexo	Ω2	Ω_4	τ	A_{rad}	A _{nrad}	A _{tot}	R ₀₂	η
	(10 ⁻²⁰ cm ²)	(10 ⁻²⁰ cm ²)	(ms)	(s ⁻¹)	(s ⁻¹)	(s ⁻¹)	(10 ⁻³)	(%)
[Eu(tta) ₃ (H ₂ O) ₂]	33,0	4,6	0,26	623	2015	2637	12,00	24
Na[Eu(tta) ₃ (aba)]	19,5	8,4	0,25	758	2123	2881	17,00	26

Figura 4. Curvas termogravimétricas e suas curvas diferenciais dos complexos [Eu(tta)₃(H₂O)₂] e Na[Eu(tta)₃(aba)].

Espectroscopia vibracional na região do infravermelho

	v_{с-н}	V _{COOH-Eu}		
[Eu(tta) ₃ (H ₂ O) ₂]	-	-		
Na[Eu(tta)3(aba)]	2960, 2931	622		

Figura 5. Espectro vibracional dos complexo [Eu(tta)₃(H₂O)₂] e Na[Eu(tta)₃(aba)].

Difração de Raios X do pó

Conclusão

> A TG do complexo Na[Eu(tta)₃(aba)] se difere do precursor, apresentando uma perda de massa atribuída à decomposição do ligante p-aba, além de não apresentar a perda de massa referente às moléculas de água coordenadas.

➢ O IV do complexo Na[Eu(tta)₃(aba)] apresenta uma pequena banda atribuída a estiramentos O-H, ao contrário da banda larga do precursor, sugerindo que não há moléculas de água coordenadas ao íon Eu(III).

> O difratograma de raios X mostra que o complexo é não-cristalino, ao contrário do precursor.

> O espectro de emissão não apresenta desdobramentos como no precursor, indicando uma mudança na esfera de coordenação do íon Eu(III) e consequentemente uma distorção do sítio de simetria.

> O tempo de vida não sofreu grandes alterações.

> Deste modo, a caracterização indica que a substituição das moléculas de água no complexo ocorreu, resultando na diminuição de sua luminescência.

