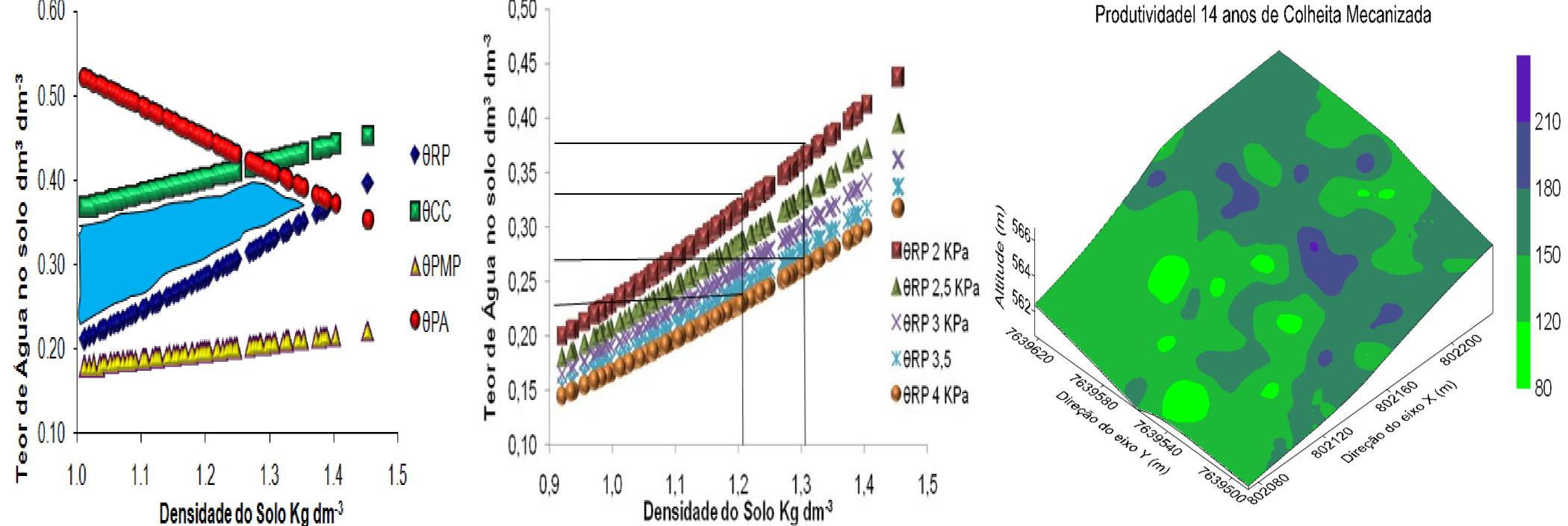
201 Exix congresso interno de iniciação científica

INTERVALO HÍDRICO ÓTIMO DE UM LATOSSOLO VERMELHO SUBMETIDO A DOIS SISTEMAS DE CULTIVO DE CANA-DE-AÇÚCAR

Gabriel Crepaldi Amato & Zigomar Menezes de Souza

Metodologia



SILVA et al., (1994); EMBRAPA (1997).

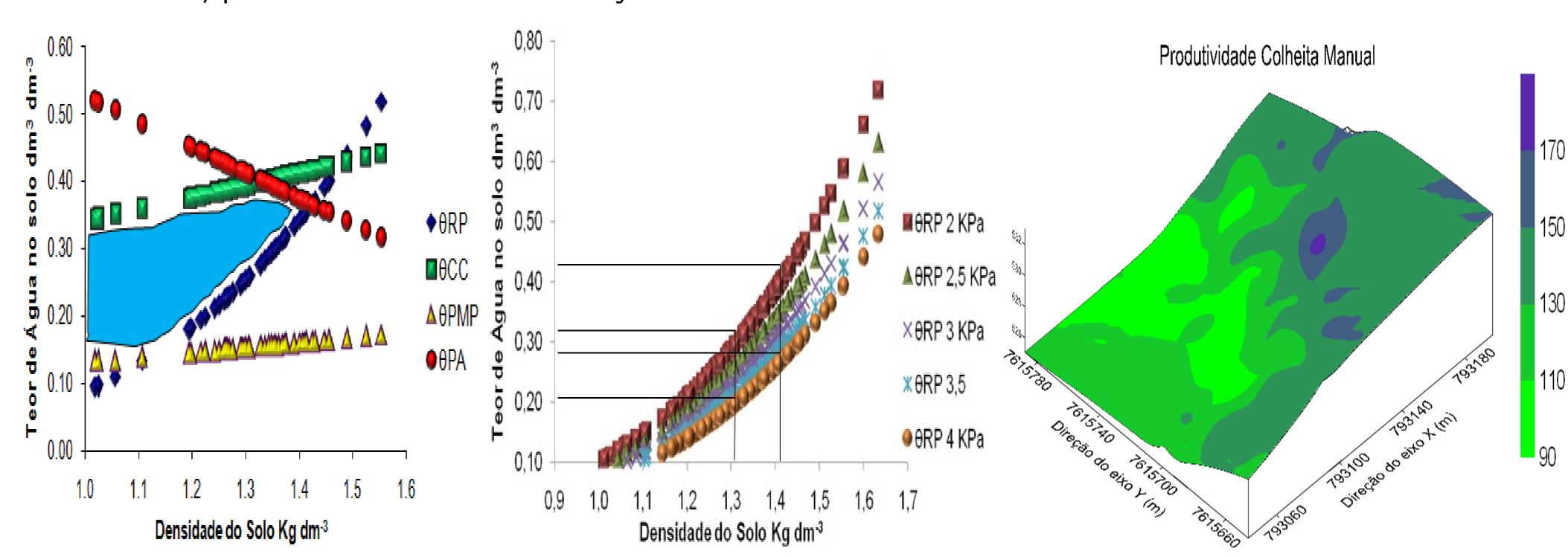

Resultados

Tabela 1. Estatística descritiva da porosidade e densidade do solo sob colheita mecanizada e colheita manual com queima, na profundidade de 0,00-0,10m

	C-11:4- M:-11-				C-1114- M 1			
Estatística -	Colheita Mecanizada				Colheita Manual			
	Porosidade (m ³ m ⁻³)			Densidade	Porosidade (m ³ m ⁻³)			Densidade
	Total	Macro	Micro		Total	Macro	Micro	
	0,00-0,10 m			0,00-0,10 m	0,00-0,10 m			0,00-0,10 m
Média	0,570	0,098	0,472	1,2	0,583	0,121	0,462	1,33
Mediana	0,565	0,088	0,470	1,2	0,580	0,115	0,466	1,34
Mínimo	0,462	0,001	0,370	1,0	0,377	0,030	0,239	1,09
Máximo	0,683	0,276	0,632	1,5	0,727	0,256	0,663	1,55
DP	0,037	0,067	0,055	0,114	0,039	0,053	0,046	0,099
CV (%)	6,62	68,37	11,67	9,35	6,85	44,27	10,03	7,43
Cs	0,38	0,53	0,27	0,42	-0,254	0,658	-0,550	-0,112
Ck	0,23	-0,46	-0,43	-0,01	6,975	-1,190	6,133	-0,373
p	0,074	$0,\!073^{\mathrm{ns}}$	$0,\!058^{\mathrm{ns}}$	$0,21^{ns}$	0,092*	$0,089^*$	0,094*	$0,063^{\mathrm{ns}}$

Figura 1. Variação do conteúdo volumétrico de água (θ, dm³ dm³) com a densidade do solo (Ds) (a), variação da resistência do solo à penetração (θRP) para os limites críticos (b) e distribuição espacial da produtividade da cana-de-açúcar (Mg ha¹) (c), num Latossolo Vermelho distroférrico sob colheita mecanizada, para a cultura da cana-de-açúcar.

Figura 2. Variação do conteúdo volumétrico de água (θ, dm³ dm⁻³) com a densidade do solo (Ds) (a), variação da resistência do solo à penetração (θRP) para os limites críticos (b) e distribuição espacial da produtividade da cana-de-açúcar (Mg ha⁻¹) (c), num Latossolo Vermelho distroférrico sob colheita manual com queima, para a cultura da cana-de-açúcar.

Conclusão

O intervalo hídrico ótimo mostrou-se sensível as alterações ocorridas no solo em detrimento dos sistemas de manejo estudados. A área sob colheita manual da cultura da cana-de-açúcar apresentou menor valor de densidade crítica para o intervalo hídrico ótimo. A maior produtividade da cultura concentrou-se nas regiões de maior altitude das áreas estudadas.

Refêrencia Bibliografica

SILVA, A.P.; KAY, B.D.; PERFECT, E. Characterization of the least limiting water range. **Society of America Journal**, Madison, v.58, n.6, p.1775-1781, 1994.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. **Manual de métodos de análise de solo**. 2.ed. Rio de Janeiro: EMBRAPA, CNPS, 1997. 212p.

Agradecimentos:

