Sistemas Clássicos de Muitos Corpos

Uma introdução através da dinâmica molecular

Instituto de Física "Gleb Wataghin

Instituto de Física "Gleb Wataghin" – Universidade Estadual de Campinas **13083 - 970, Campinas - SP, Brasil**

Lucas Madeira* e Silvio A. Vitiello[†]

*madeira@ifi.unicamp.br [†]vitiello@ifi.unicamp.br

Resumo

Neste trabalho estudamos algumas das propriedades de sólidos formados por átomos de Argônio. Adotamos para descrever as interações interatômicas um potencial da forma Lennard-Jones, tanto pela sua simplicidade como pelos bons resultados que ele permite obter. O método que utilizamos para obter os resultados foi o da dinâmica molecular. A execução deste trabalho exigiu a modificação de programas existentes para calcular a função radial de pares, e a implementação de cálculos tanto à temperatura como à pressão constantes. Foi igualmente importante para a determinação dos resultados a utilização do programa MD++ da Stanford University. Os cálculos da função radial de pares (para sólidos, líquidos e gases) e das constantes elásticas do sistema apresentaram um bom acordo com os resultados da literatura.

Dinâmica Molecular

• As leis de Newton são aplicadas a átomos, onde fenômenos quânticos podem ser desprezados em boa aproximação, para obter a trajetória de um grande número de partículas em um certo período de tempo, e assim calcular propriedades de interesse do sistema.

Potencial de Interação

Figura 1: Potencial de Lennard-Jones (unidades reduzidas)

Condições Periódicas de Contorno e Convenção da Mínima Imagem

Figura 2: Sistema periódico bidimensional [2]. A caixa central é replicada (A,B,C,D,E,F,G,H), bem como a posição relativa das 5 partículas. Cada vez que um átomo "sai" da caixa de simulação, ele "entra" na caixa adjacente, de tal forma que o número de partículas permanece constante na célula de simulação. Cada partícula interage apenas com as que estão em uma distância menor que L/2.

Grandezas Termodinâmicas

Figura 5: Gráfico g(r) versus r; $\rho=0.03$ (fase gasosa)

Figura 6: Gráfico $P \times iterações$; T=0,8; ρ =0,03; P_t =770; $\tau = 10$

Figura 9: Constante Elástica C₁₂

 $V(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$

(1)

Unidades Reduzidas

Tabela 1: k é a constante de Boltzmann, igual a $1,38 \ 10^{-23} J/K$. A unidade de pressão é dada para um sistema de duas dimensões. Os valores das unidades no SI para o Argônio são apresentados na terceira coluna [1].

Quantidade	Unidade	Valor para o Argônio	
Comprimento	σ	3,4 10^{-10} m	
Energia	ϵ	1,65 10^{-21} J	
Massa	m	6,69 10 ⁻²⁶ kg	
Tempo	$\sigma \left(m/\epsilon ight) ^{1/2}$	2,17 10^{-12} s	
Velocidade	$\left(\epsilon/m ight)^{1/2}$	1,57 $10^2 \ m/s$	
Força	ϵ/σ	4,85 10 ⁻¹² N	
Pressão	ϵ/σ^2	1,43 $10^{-2} N.m^{-1}$	
Temperatura	ϵ/k	120 <i>K</i>	

Função Radial de **Distribuição de Pares**

• Medida de correlação entre as partículas de um sistema de muitos corpos.

$$P(t)A = NkT(t) + \frac{1}{2}\sum_{i < j} \mathbf{r}_{ij}(t) \cdot \mathbf{F}_{ij}(t), \quad (6)$$

 $kT(t) = \frac{1}{2(N-1)} \sum_{i=1}^{N} m_i \overline{\mathbf{v}_i(t)} \cdot \mathbf{v}_i(t), \qquad (7)$

O ensemble NPT

• Barostato: reescala as distâncias

 $\mu = \left[1 - \frac{\Delta t}{\tau} (P_t - P_0)\right]^{1/2},$

• Termostato: reescala as velocidades

 $\lambda = \sqrt{\frac{4NkT}{\sum_{i} mv_i^2}},$

Figura 7: Gráfico $T \times iterações$; T=0,8; ρ =0,84

Elasticidade

Tabela 2: As três constantes elásticas independentes de um cristal cúbico e as relações com as tensões e deformações.

		e_{xx}	e_{yy}	e_{zz}	e_{yz}	e_{zx}	e_{xy}	ļ
ſ	X_x	C_{11}	C_{12}	C_{12}	0	0	0	
	Y_y	C_{12}	C_{11}	C_{12}	0	0	0	
	Z_z	C_{12}	C_{12}	C_{11}	0	0	0	
	Y_{z}	0	0	0	C_{44}	0	0	
	Z_x	0	0	0	0	C_{44}	0	
	X_y	0	0	0	0	0	C_{44}	

Cálculo das **Constantes Elásticas**

Figura 10: Constante Elástica C₄₄

Conclusão

Obtivemos resultados satisfatórios para o termostato e o barostato, muito utilizados no chamado ensemble NPT. A função radial de distribuição de pares foi minuciosamente estudada, levando a resultados com alta concordância com a literatura.

Com relação às propriedades elásticas do Argônio, adquirimos um embasamento teórico que permitiu compreender o cálculo das constantes elásticas através do sofisticado programa de dinâmica molecular MD++ [3]. Os resultados das constantes elásticas à temperatura finita e para T=0K apresentaram concordância com os dados experimentais da literatura e, também, de outras

• Densidade local: número médio de partículas entre **r** e **r** + d**r** é $\rho g(\mathbf{r})$ d**r**

para o Argônio

• Programa MD++ [3]

Resultados para T=0K

(10)

• $C_{11} = 4,36 \pm 0,01$ GPa • $C_{12} = 2,52 \pm 0,01$ GPa • $C_{44} = 2,4306 \pm 0,0001$ GPa

Resultados para Temperatura Finita [4]

simulações de dinâmica molecular.

Agradecimentos

Os autores agradecem o Conselho Nacional de Desenvolvimento Científico e Tecnológico e a Fundação de Amparo à Pesquisa do Estado de São Paulo pelo apoio financeiro.

Referências

- [1] J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems (2006). [2] M.P. Allen e D.J. Tildesley, *Computer simulation of liquids* (1973).
- [3] http://micro.stanford.edu/~caiwei/Forum/ 2004-12-12-MD++/http://micro.stanford.edu/ wiki/MD++_Manuals
- [4] G.J. Keeler e D.N. Batchelder. Measurement of the elastic constants of argon from 3 to 77 degrees k. Journal of Physics C Solid State Physics, 3:510–522,1970.

(8)

(9)