AVALIAÇÃO DE DIFERENTES MATERIAIS DE PAREDE E DE DIFERENTES CONCENTRAÇÕES DE ÓLEO NA MICROENCAPSULAÇÃO DE ÓLEO DE LINHAÇA POR "SPRAY DRYING"

Rânie B. Pedro; Renata V. Tonon; Miriam D. Hubinger (mhub@fea.unicamp.br)

FACULDADE DE ENGENHARIA DE ALIMENTOS, UNIVERSIDADE DE CAMPINAS, SAE - UNICAMP

Palavras-Chave: Óleo de linhaça - Microencapsulação - "Spray drying".

INTRODUÇÃO

- ❖ Óleo de linhaça é uma das maiores fontes de ômega-3 na natureza → efeito positivo sobre a saúde humana.
- No entanto, durante o processamento, a distribuição e o manuseamento, este óleo pode se oxidar facilmente, devido ao seu alto grau de insaturação.
- ❖A microencapsulação de óleos em uma matriz polimérica é uma alternativa para protegê-los contra a oxidação lipídica.
- *Fatores que afetam a eficiência de encapsulação de óleos microencapsulados são: tipo de material da parede, propriedades dos materiais principais e condições do processo de secagem.

<u>OBJETIVO</u>: ESTUDAR A INFLUÊNCIA DO MATERIAL DE PAREDE E DA CONCENTRAÇÃO DE ÓLEO NA MICROENCAPSULAÇÃO DE ÓLEO DE LINHAÇA POR "SPRAY DRYING".

MATERIAL E MÉTODOS

MATERIAL: Óleo de linhaça (Sabor da Terra, Bragança Paulista, Brasil), Goma arábica Instantgum BA® (Colóides Naturais, São Paulo, Brasil), concentrado protéico de soro de leite WPC 80 (Alibra, Campinas, Brasil) e amido modificado HiCap 100 (National Starch, São Paulo, Brasil).

PREPARAÇÃO DA EMULSÃO: O material de parede foi dissolvido em água destilada sob agitação magnética → As emulsões foram preparadas pela mistura de óleo de linhaça à solução parede, usando um homogeneizador rotor-estator, com 15.500 rpm por 5 min.

SPRAY DRYING: - Spray dryer de escala laboratorial LabPlant SD-05 (Huddersfield, Inglaterra), com um bico de 1,5 mm de diâmetro, fluxo do ar de seçagem de 73m³/h e pressão do ar comprimido de 0.06MPa.

- <u>Análise de tamanho de gota da emulsão</u>: Mastersizer S (Malvern Instruments, Malvern, UK).
- <u>Viscosidade da emulsão:</u> reômetro Physica MCR301 (Anton Paar, Graz, Austria) com geometria placa-placa em aço inoxidável, com diâmetro de 75 mm e "gap" de 0,2 mm.

RESULTADOS E DISCUSSÃO

CARACTERIZAÇÃO DAS EMULSÕES

% DE SEPARAÇÃO					
Concentração de óleo	Conc. protéico de soro	Goma arábica	Hi Cap		
10%	4,76	0	4,76		
20%	11,90	0	11,90		
30%	23,81	0	16,67		
40%	26 19	2 38	23.81		

Letras diferentes indicam diferença estatisticamente significativa (p≤0.05).

♦ ↑ Concentração de óleo → ↑ Separação:

- As emulsões preparadas com goma arábica apresentaram-se mais estáveis, já as preparadas com concentrado protéico do soro do leite e Hi-Cap tiveram formação de uma camada de separação que aumentou proporcionalmente com o aumento da concentração de óleo.

TAMANHO DAS GOTAS (μm)					
Concentração de óleo	Conc. protéico do soro	Goma arábica	Hi Cap		
10%	2,172 ± 0,029 aA	1,854 ± 0,008 eB	2,4290 ± 0,0099 iC		
20%	2,515 ± 0,006 bD	2,191 ± 0,002 fE	2,6445 ± 0,0148 jF		
30%	2,922 ± 0,006 cG	2,479 ± 0,003 gH	3,5470 ± 0,0311 kI		
40%	$3,939 \pm 0,001 dJ$	3,464 ± 0,064 hK	4,8500 ± 0,0000 IL		

Letras diferentes indicam diferença estatisticamente significativa (p≤0.05).

- ♦ ↑ Concentração de óleo → ↑ Tamanho das gotas:
- Menos material de parede disponível para emulsificação em todos os casos.

VISCOSIDADE APARENTE (Pa.s)					
Concentração de óleo	Conc. protéico de soro	Goma arábica	Hi Cap		
10%	0,0339 ± 0,0004 aA	0,1111 ± 0,0043 bB	0,0176 ± 0,0001 cC		
20%	0,0211 ± 0,0007 bD	0,0920 ± 0,0008 fE	0,0145 ± 0,0002 jF		
30%	0,0148 ± 0,0002 cG	0,0755 ± 0,0001 gH	0,0120 ± 0,0001 kI		
40%	0,0103 ± 0,0001 dJ	0,0605 ± 0,0001 hK	0,0106 ± 0,0002 IL		

Letras diferentes indicam diferença estatisticamente significativa (p \leq 0.05).

- ♦ ↑ Concentração de óleo → ↓ Viscosidade:
- Menor quantia de material de parede nas emulsões com maior concentração de óleo.
- Viscosidade das emulsões: Goma arábica >Concentrado protéico do soro > Hi Cap.

CARACTERIZAÇÃO DAS PARTÍCULAS

Eficiência de encapsulação

Letras diferentes indicam diferença estatisticamente significativa (p≤0.05).

- ♦ ↑ Concentração de óleo → ↓ Eficiência de encapsulação:
- Quanto menor a viscosidade da emulsão, mais fácil é a difusão das gotas de óleo dentro da emulsão atomizada, favorecendo a migração do óleo para a superfície de partículas. Isso pode ser observado nos três materias de parede analisados.

Oxidação lipídica

Letras diferentes indicam diferença estatisticamente significativa (p≤0.05).

- ♦ ↑ Concentração de óleo e ↓ teor de sólidos → ↑ Indíce de peróxidos:
- Menor eficiência de encapsulação → maior a quantidade de óleo na superfície das partículas → mais pobre a proteção contra a oxidação lipídica.
- ❖ Apesar da menor eficiência de encapsulação da proteína do soro em relação à goma arábica, este apresentou maior proteção contra a oxidação lipídica.

<u>CONCLUSÃO</u>

* A eficiência de encapsulação e a oxidação lipídica foram afetadas pelo tipo e pela proporção material da parede/óleo. Entre os materiais de parede avaliados, o Hi-Cap obteve melhores resultados de eficiência de encapsulação. As melhores condições para encapsulação de óleo de linhaça foram com as menores concentrações de óleo. Este trabalho mostrou que a eficiência de encapsulação depende diretamente das propriedades da emulsão (viscosidade e tamanho das gotas).

REFERÊNCIAS: - BAE, E.K.; LEE, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, v.25, p.549-560, 2008.

- PARTANEN, R. et al. Effect of relative humidity on oxidation of flaxseed oil in spray dried whey protein emulsions. Journal of Agricultural and Food Chemistry, v.56, n.14, p.5717-5722, 2008.

AGRADECIMENTOS: Os autores agradecem ao SAE/UNICAMP e à FAPESP pelo apoio financeiro.