

AVALIAÇÃO DAS CARACTERÍSTICAS CORROSIVAS DO BIODIESEL OBTIDO A PARTIR DE ÓLEO DE SOJA E ÓLEO DE GIRASSOL

Taína Martins Magalhães (<u>magalhaes.taina@gmail.com</u>) Margarita Ballester; Celia Marina de A. Freire¹

¹LABORATÓRIO DE ENGENHARIA DE CORROSÃO E PROTEÇÃO, FACULDADE DE ENGENHARIA MECÂNICA, UNICAMP Projeto financiado pelo PIBIC/CNPq

Palavras Chave: Biodiesel - Corrosão — Caracterização

INTRODUÇÃO

Apesar de ainda não ser utilizado na sua forma 100% pura, o biodiesel já é uma alternativa energética empregada para diminuir o consumo de derivados do petróleo. Com seu uso como medida alternativa fez-se necessário o estudo de seu comportamento em contato com diversos materiais, os quais são comumente utilizados no ciclo do uso do biocombustível.

A corrosividade do biodiesel poderia ser considerada baixa, porém, seu padrão de qualidade é facilmente alterado e sua ação corrosiva aumenta pelo fato de possuir baixa estabilidade oxidativa e hidrolítica.

O trabalho tem como objetivo verificar a ação corrosiva do biodiesel produzido a partir dos óleos de soja e girassol no cobre, alumínio e aço carbono, por meio de ensaios eletroquímicos e medida de acidez do biodiesel.

METODOLOGIA

• Testes de imersão: Placas dos 3 materiais, previamente limpas, foram imersas nos biodieseis nos tempos de 30 minutos, 3 horas, 24 horas, 72 horas, 10 dias, 20 dias, 30 dias. Após cada teste, as amostras foram observadas no microscópio óptico *Neophot*.

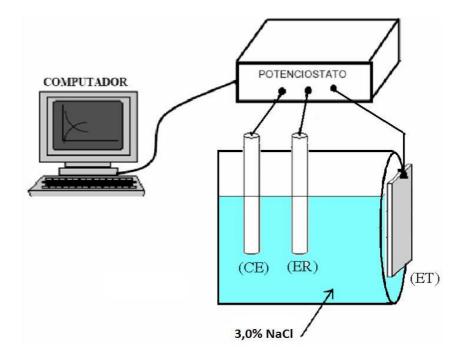


Figura 1: Esquema para levantamento de curvas de polarização, onde CE é o contra eletrodo de platina, ER é o eletrodo de referência (SCE) e ET, o eletrodo de trabalho

• Curvas de Polarização: Foi feito nas amostras de cobre, alumínio e aço carbono sem imersão e após 30 dias de imersão em biodiesel. Para os ensaios utilizou-se uma célula de vidro de três eletrodos, com NaCl 3% como eletrólito.

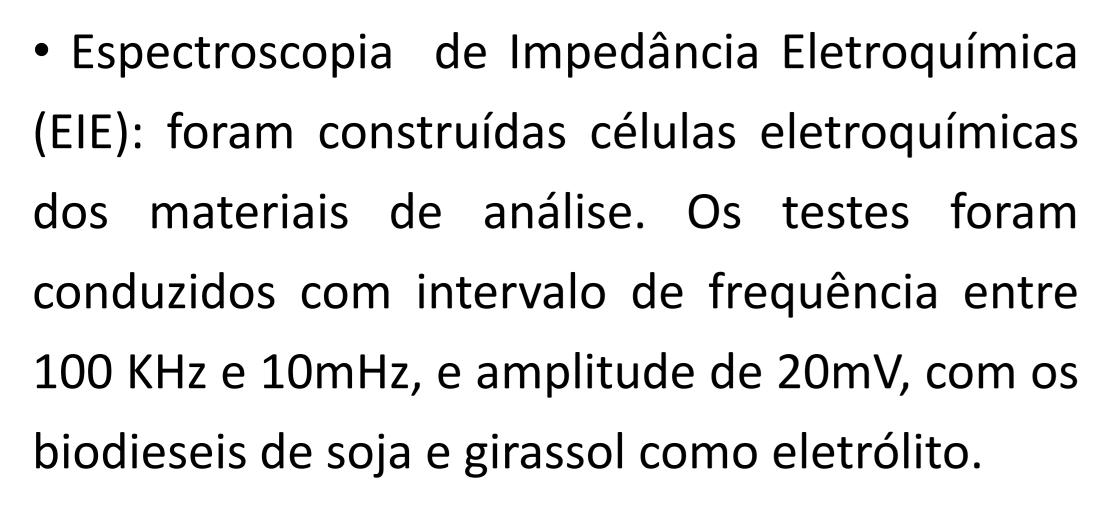


Figura 2: Célula de aço conectada no Eletrodo de trabalho (verde) e o Contraeletrodo (vermelho)

• O teste de acidez: Determinou-se a presença de ácidos graxos livres (%AGL) nos biodieseis utilizados nas medidas de EIE após 30 dias em contato com os três materiais e sem contato. Seguiu-se o método da *American Oil Chemistys Society* (AOCS) - CA 5a-40 (1993).

RESULTADOS E DISCUSSÃO

Nos testes de imersão, a observação das amostras no microscópio ótico indicou que cobre foi o metal mais susceptível a corrosão do biodiesel, tanto de soja quanto de girassol.

As curvas de polarização obtidas estão ilustradas abaixo para o biodiesel de soja. Para o biodiesel de girassol, as conclusões foram similares.

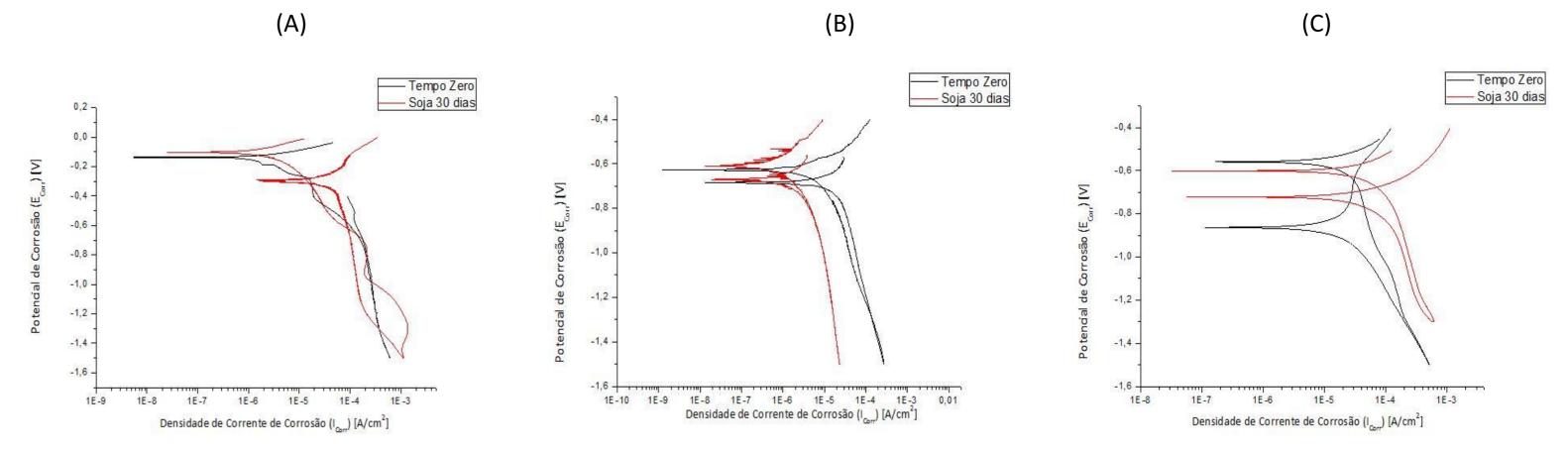


Figura 4: Comparação das curvas de polarização. (A) Cobre smersão e após 30 dias em biodiesel de soja; (B) Alumínio sem imersão e após 30 dias em biodiesel de Soja; (C) Aço sem imersão e após 30 dias de imersão em biodiesel de soja.

Para o cobre, a curva referente ao material após imersão apresenta um ΔΕ, ao contrário da placa no tempo zero, mostrando alteração da superfície. Isso também ocorreu para a amostra de aço.

Com relação ao alumínio, não é possível considerar que o biodiesel provocou alguma alteração na superfície que influenciasse no comportamento do metal perante a solução de NaCl.

Para o teste de EIE, a tabela abaixo ilustra os valores de impedância para as amostras.

Tabela 1: Módulo da Impedância (x10⁷Ω) para baixas frequências

Tabela 1	. Moduli	o ua	ппреца	IIICI	1 (X TO 72)) pai	a Daixas	пе	quencias	>		
Tempo	Aço				Alumínio				Cobre			
	Girassol		Soja		Girassol		Soja		Girassol		Soja	
0	25,00	inui	40,00	Aumenta Diminui	-		48,00		500,00		150,00	
30 min	-		15,00		-		-		400,00	Diminui	120,00	
3h	2,40	Diminui	1,91		-		-		320,00		65,00	
24h	0,83		0,64		37	Muito próximos	39,00	Muito próximos	200,00	Aumenta e estabiliza	30,00	Diminui
3 dias	0,15	Dim Aumenta	1,16						150,00		18,00	
10 dias	1,72		1,94	Aun					200,00		6,50	
20 dias	1,74		1,58	inui					190,00		4,00	
30 dias	1,20		1,00	Diminui					210,00		2,70	

O cobre teve sua superfície modificada e para o biodiesel de girassol formou uma película protetora, assim como a aço. O alumínio, novamente, não se modificou na presença dos biodieseis.

Quanto ao teste de acidez, os valores de %AGL que mais se alteraram foram dos biodieseis que ficaram em contato com o cobre . A %AGL dos biodieseis em contato com o aço sofreram pequenas alterações.

CONCLUSÃO

O cobre é afetado pelo biodiesel, tanto de soja quanto de girassol. Em contato com o biodiesel de soja, pode formar uma película protetora, assim como o aço em contato com os dois biodieseis. O alumínio, por sua vez, não é afetado pelo contato com os biodieseis.