

AVALIAÇÃO DA MUDANÇA DE COLORAÇÃO DE CABELOS CLAROS TRATADOS COM CHÁ DE CAMOMILA

Viviane de Souza Moraes e Inés Joekes

Instituto de Química - UNICAMP - Agência Financiadora: Pibic/SAE E-mail: vivi.eq09@gmail.com, ines@iqm.unicamp.br

RESUMO

Estudou-se o efeito da camomila na coloração de cabelos caucasianos loiro, castanho e descolorido, com e sem interação com a radiação UV. Foram propostos três ensaios: há mechas que foram apenas lavadas com o chá de camomila e deixadas secar naturalmente, há mechas que foram apenas expostas à radiação UV proveniente do sol e da lâmpada de mercúrio e há mechas que passaram pelos dois tratamentos concomitantemente.

As mechas foram irradiadas com ultravioleta total (UVA e UVB) e luz visível produzidos por uma lâmpada de vapor de mercúrio para simular os danos causados pela irradiação do sol, num total de 422 horas para o cabelo castanho, 204 horas para o cabelo loiro e 224 horas para o cabelo descolorido. Com as medidas de propriedades de cor, pode-se observar que a camomila tem como efeito principal o amarelamento nos cabelos claros. Cabelos loiros tratados somente com chá de camomila tornam-se amarelados, e os tratados com chá e expostos à radiação UV tem esse efeito aumentado. Os cabelos que foram descoloridos tiveram comportamento semelhante, embora em menor intensidade, e os cabelos castanhos não apresentaram variação significativa, porém tendem a ficar levemente avermelhados após serem tratados com camomila.

INTRODUCÃO

O cabelo é formado por α-queratina e divide-se em 4 estruturas morfológicas principais: córtex, cutículas, complexo da membrana celular (CMC) e medula (Figura 1). A grande variedade de cores de cabelo resulta da presença de variável quantidade e mistura de diferentes melaninas, no córtex. A Camomila (*Matricaria recutita*, *Matricaria chamomilla*) é uma planta da família Asteraceae e é composta por substâncias como o alfa bisabolol, azulenos e camazulenos em seu óleo essencial, e também por flavonóides, principalmente a apigenina. A radiação UV também causa danos nos cabelos. A radiação ataca tanto as proteínas quanto as melaninas dos cabelos. Vários danos ao cabelo têm sido atribuídos à decomposição de aminoácidos, entre eles, alteração de cor

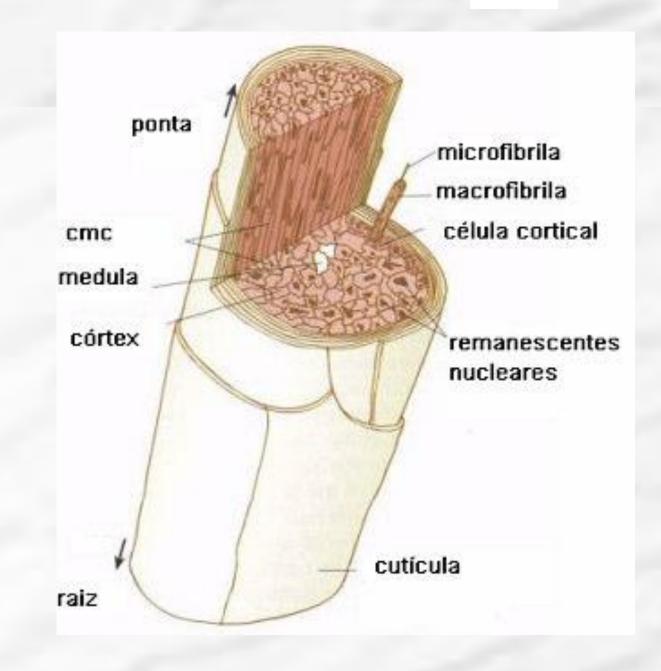
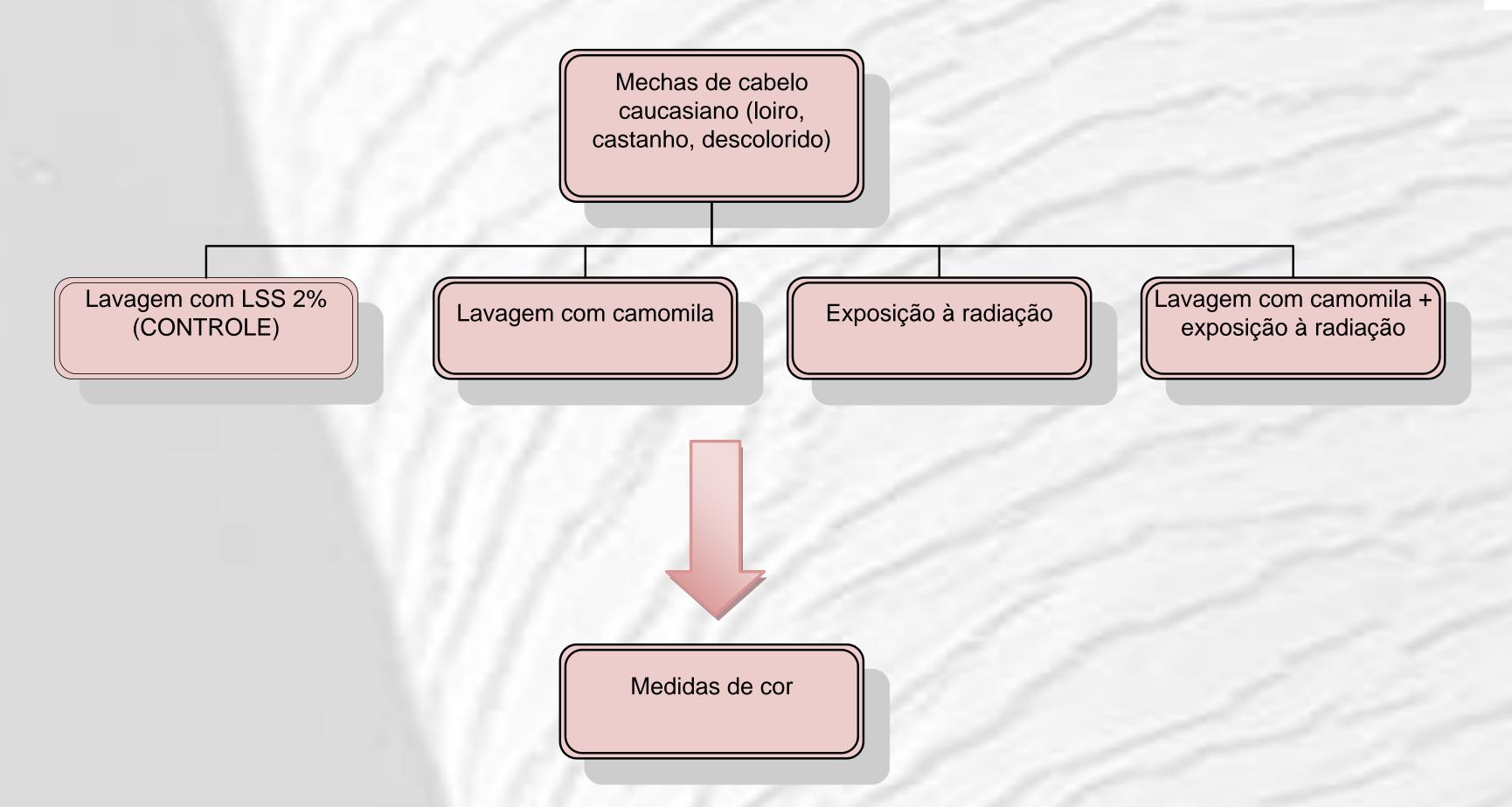



Figura1: Ilustração esquemática da estrutura morfológica do cabelo

EXPERIMENTAL

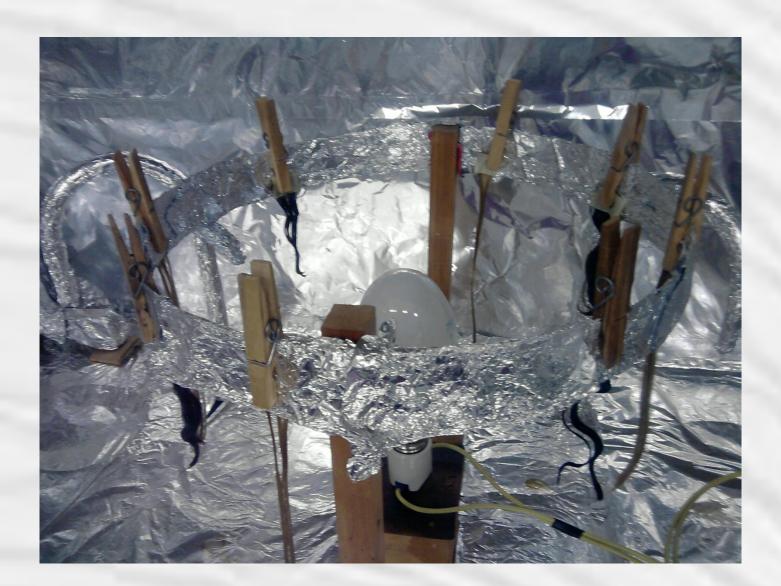


Figura 2: Montagem para exposição de mechas à radiação proveniente da lâmpada de vapor de mercúrio.

Figura 3: Procedimento para o preparo do chá de camomila

RESULTADOS

Mudanças de cor:

Cabelo Loiro:

Mecha	Tempo (h)	DL*	Da*	Db*	DE*
Camomila (A)	204	3,0 ± 1,1	*	$3,5 \pm 0,6$	4,6 ± 1,4
Camomila (B)	204	$3,7 \pm 1,1$	*	$3,7 \pm 0,9$	5,3 ± 1,6
Lâmpada (C)	204	$7,1 \pm 0,9$	$-1,6 \pm 0,6$	*	$7,3 \pm 1,4$
Lâmpada (D)	204	$7,1 \pm 0,7$	$-1,0 \pm 0,7$	$1,4 \pm 0,9$	$7,3 \pm 1,4$
Camomila + Lâmpada (E)	204	$5,0 \pm 0,5$	*	$5,9 \pm 0,3$	$7,7 \pm 0,7$
Camomila + Lâmpada (F)	204	$5,1 \pm 0,9$	*	$6,0 \pm 0,6$	$7,9 \pm 1,3$
Sol (G)	50	$7,3 \pm 1,0$	*	$2,3 \pm 0,4$	7,7 ± 1,3
Sol (H)	50	6,9 ± 1,1	-0.9 ± 0.7	$2,0 \pm 0,7$	$7,2 \pm 1,5$
Camomila + Sol (I)	50	5,8 ± 1,5	*	$5,1 \pm 0,4$	7,8 ± 1,7
Camomila + Sol (J)	50	$5,1 \pm 0,9$	*	$4,2 \pm 0,6$	6,7 ± 1,2

As mechas de cabelo loiro foram as que mais sofreram mudanças de coloração, principalmente nos parâmetros L* (luminosidade) e b* (amarelamento), sendo que o parâmetro a* não sofre variações significativas em nenhuma das condições experimentais.

Para os cabelos lavados com chá e irradiados na lâmpada, observa-se um aumento no parâmetro L* e no parâmetro b* maiores que no tratamento somente com a camomila, o que indica que as mechas tornam-se mais claras e tem um amarelamento maior.

As mechas irradiadas no sol tiveram comportamento semelhante, embora irradiadas por bem menos tempo que as mechas da lâmpada.

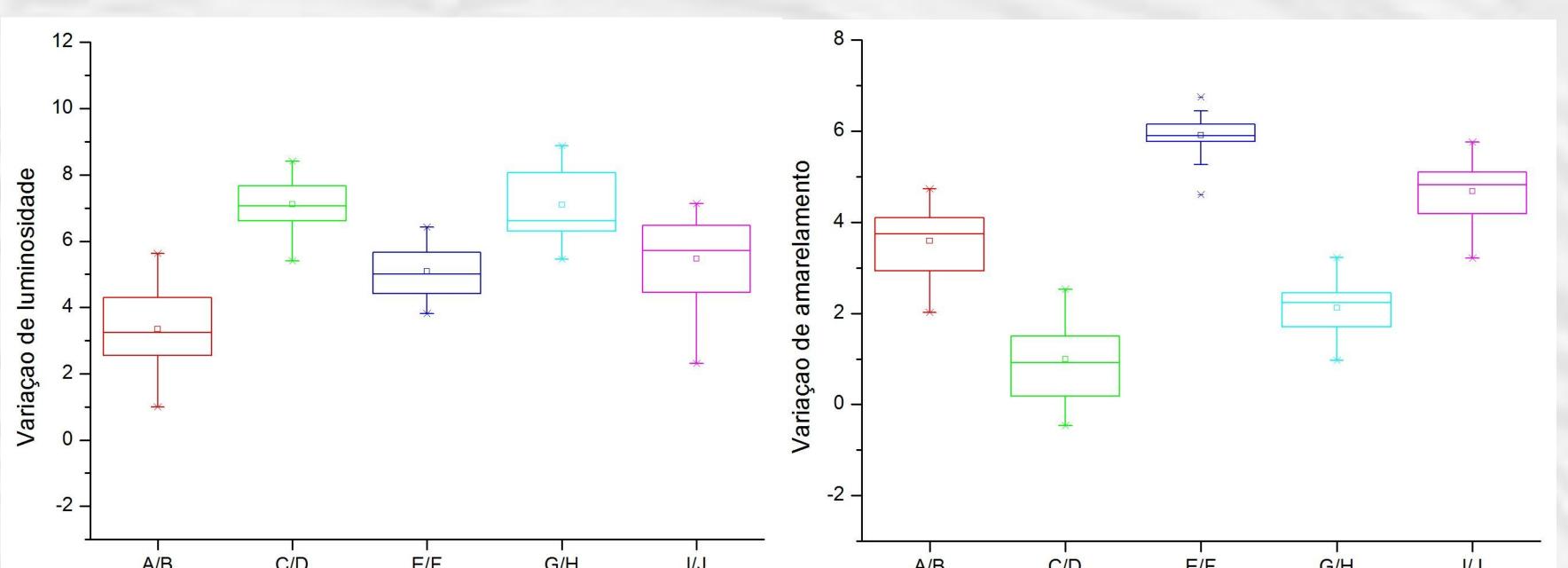


Figura 4: Variação de luminosidade para os cabelos loiros Figura 5: Variação de amarelamento para os cabelos loiros

CONCLUSÕES

Os resultados deste trabalho mostram que, em relação à coloração, a camomila tem como efeito principal o amarelamento nos cabelos claros. Cabelos claros tratados somente com chá de camomila tornam-se amarelados, e os tratados com chá e expostos à radiação UV tem esse efeito aumentado.

Cabelos que passaram por um processo de descoloração tiveram comportamento semelhante ao dos cabelos claros, embora em menor intensidade, e os cabelos escuros não apresentaram variação de cor significativa como os cabelos claros, porém tendem a ficar levemente avermelhados após serem tratados com camomila.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Ganzera M, Schneider P, Stuppner H. "Inhibitory effects of the essential oil of chamomile (Matricaria recutita) and its major constituents on human cytochrome P450 enzymes." *Life Science*, **78**, 856–61, 2006.
- [2] Schueler, R.; Romanowski, P., "Introdução aos produtos Fotoprotetores", *Cosmetics and Toiletries*, **12**, 60-67, 2000