

AVALIAÇÃO DA INCURPURAÇÃO DE LECTOR PROPRIEDADES DE CRISTALIZAÇÃO DE GORDURAS INDUSTRIAIS

Katrina de Cássia Correa, Ana Paula Badan Ribeiro, Theo Guenter Kieckbusch Faculdade de Engenharia Química - FEQ, UNICAMP

Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP

Palavras - chave: Gorduras - Cristalização - Lecitinas

Introdução

Os lipídeos presentes nos alimentos têm grande importância nutritiva e tecnológica. Embora utilizada durante muito tempo para diversas aplicações industriais, a gordura parcialmente hidrogenada apresenta expressivo teor de isômeros trans, associado ao aumento de doenças coronarianas. As gorduras interesterificadas e o óleo de palma viabilizam a substituição das gorduras parcialmente hidrogenadas na produção de alimentos, com ausência de isômeros trans. Gorduras plásticas são constituídas de uma rede cristalina em uma matriz oleosa contínua e suas diferentes formas cristalinas são responsáveis por diferentes características físico-químicas e de aplicação industrial. As lecitinas estão entre os emulsificantes mais utilizados na indústria de alimentos. Emulsificantes com diferentes propriedades hidrofóbicas podem afetar a dinâmica de cristalização de óleos e gorduras, acelerando ou retardando este processo, bem como as transições polimórficas. Uma nova tendência em tecnologia de óleos e gorduras é o aprimoramento das propriedades industriais destas matérias-primas, mediante a incorporação desses aditivos.

Materiais e Métodos

Foram utilizadas duas gorduras de uso industrial: óleo de palma e gordura interesterificada (obtida a partir de 30% óleo de soja e 70% óleo de soja totalmente hidrogenado). Em cada uma das gorduras foram adicionados, individualmente, três tipos de lecitinas: lecitina padrão comercial, lecitina acetilada e lecitina hidrolisada enzimaticamente, nas proporções de 0,1, 0,5, 1,0, 3,0 e 5,0% (m/m), totalizando 32 amostras, sendo duas delas amostras controle.

Caracterização das matérias primas: Composição em ácidos graxos (AOCS Ce 2-66), Índice de iodo (AOCS Cd 1c-85), Índice de saponificação (AOCS Cd 31-94), Composição triacilglicerólica (Antonisi Filho, Mendes, Lanças, 1995).

Propriedades de cristalização:

Isotermas de cristalização - As amostras foram previamente fundidas a 50°C por 15min. O conteúdo de gordura sólida em função do tempo de cristalização foi monitorado por Espectrômetro de Ressonância Magnética Nuclear (RMN) Bruker pc120 Minispec, com compartimento de leitura estabilizado a 20°C para o óleo de palma e 25°C para a gordura interesterificada. A caracterização da cinética de cristalização foi realizada segundo o período de indução (Tind) - relativo ao início da formação dos cristais - e o teor máximo de sólidos (SFC_{máx}) (Campos, 2005).

Diagramas de fases - Foram construídos diagramas de fases a partir dos resultados obtidos das isotermas de cristalização, para as diversas concentrações de lecitinas, segundo o método proposto por Timms (2003).

Resultados e Discussão

Efeitos da adição de lecitinas em gordura interesterificada

Diagrama de fases (Figura 1): para as lecitinas padrão e acetilada observou-se comportamento eutético a partir da concentração de 0,5%; para a lecitina hidrolisada enzimaticamente o comportamento eutético ocorre em todas as concentrações. Efeito indesejável, pois está associado à diminuição do seu ponto de fusão e a possíveis problemas de separação de fases;

Isotermas de cristalização (Tabela 1): A adição das diferentes lecitinas, a todas as concentrações, demonstra discretos aumentos no valor de T_{ind}, e diminuição do percentual de $SFC_{m\acute{a}x_i}$ indicativo de um retardamento no processo de cristalização da gordura interesterificada, o que se mostra negativo do ponto de vista das aplicações industriais.

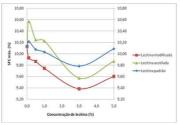


Tabela 1. Tempo de indução $(T_{\rm rol})$ e teor de sólidos máximo $(SFC_{\rm orb})$ das isotermos de cristalização a 25°C das misturas de gordura interesterificada com lectitinas padrão, hidrolisada enzimaticamente e acetilada, nas concentrações de 0.1,0.5,1.0,3.0 e 5.0%.

Amostras	T ind (min)	SFC mix. (%)
Inter controle	7	10,12
Inter c/ lecitina padrão 0,1%	8	10,22
Inter c/ lecitina padrão 0,5%	9	10,08
inter c/ lecitina padrão 1,0%	9	10,03
inter c/ lecitina padrão 3,0%	9	9,78
inter c/ lecitina padrão 5,0%	7	10,09
inter c/ lecitina modificada 0,1%	9	9,93
nter c/ lecitina modificada 0,5%	9	9,87
nter c/ lecitina modificada 1,0%	9	9,74
inter c/ lecitina modificada 3,0%	10	9,38
inter c/ lecitina modificada 5,0%	8	9,60
nter c/ lecitina acetilada 0,1%	8	10,57
nter c/ lecitina acetilada 0,5%	8	10,25
nter c/ lecitina acetila da 1,0%	9	10,22
nter c/ lecitina acetilada 3,0%	9	9,57
nter c / lecitina acetilada 5 0%	9	9.87

Efeitos da adição de lecitinas em óleo de palma

<u>Diagrama de fases</u> (Figura 2): observa-se boa compatibilidade para as lecitinas acetilada e hidrolisada enzimaticamente, efeito positivos para aplicação industrial. Para lecitina padrão: comportamento eutético pouco expressivo a 0,5%.

Isotermas de cristalização (Tabela 2) a adição das diferentes lecitinas não tiveram efeitos sobre o SFC_{máx} no entanto para ocorre uma aceleração da cristalização, esse demonstrado pelo tempo de indução (T_{ind}), quando adicionadas de lecitina acetilada e lecitina hidrolisada enzimaticamente na concentração de 5,0%. A adição de lecitina padrão não promoveu mudanças de comportamento cristalino em nenhuma das concentrações estudadas.

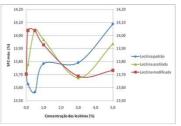


Tabela 2. Tempo de indução $(T_{\rm red})$ e teor de sólidos máximo $(SFC_{\rm ode})$ dos isotermas de cristalização a $20^{\circ}{\rm C}$ das misturas do óleo de palma com lecitinas padrão, hidrolisada enzimaticamente e acetilada, nas concentrações de 0,1,0.5,10,3,0.6 >0.05

Amostras	T ind (min)	SFC mis. (%)
Palma controle	15	13,70
Palma c/ lecitina padrão 0,1%	13	13,74
Palma c/ lecitina padrão 0,5%	16	13,57
Palma c/ lecitina padrão 1,0%	15	13,79
Palma c/ lecitina padrão 3,0%	16	13,79
Palma c/ lecitina padrão 5,0%	12	14,09
Palma c/ lecitina modificada 0,1%	14	14,04
Palma c/ lecitina modificada 0,5%	15	14,04
Palma c/ lecitina modificada 1,0%	13	13,93
Palma c/ lecitina modificada 3,0%	15	13,69
Palma c/ lecitina modificada 5,0%	7	13,73
Palma c/ lecitina acetilada 0,1%	15	13,78
Palma c/ lecitina acetilada 0,5%	16	14,05
Palma c/ lecitina acetilada 1,0%	14	13,97
Palma c/ lecitina acetilada 3,0%	13	13,68

Conclusões

As interações entre as gorduras avaliadas e as lecitinas mostraram-se diferenciadas. A gordura interesterificada respondeu negativamente à adição de todas as lecitinas (efeito antagônico) em praticamente todas as concentrações, com retardo na cristalização, associada a um pequeno efeito eutético ou de incompatibilidade física. O óleo de palma respondeu positivamente à incorporação de lecitinas, com diminuição do tempo de indução, aumento do teor de sólidos máximo e ausência de efeitos eutéticos, sendo sua cristalização acelerada pela adição destes componentes. Os melhores resultados foram obtidos com as lecitinas acetilada e hidrolisada enzimaticamente.

Agradecimentos

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Proc. 09/53006-0 e Proc. 10/18953-6).

Referências