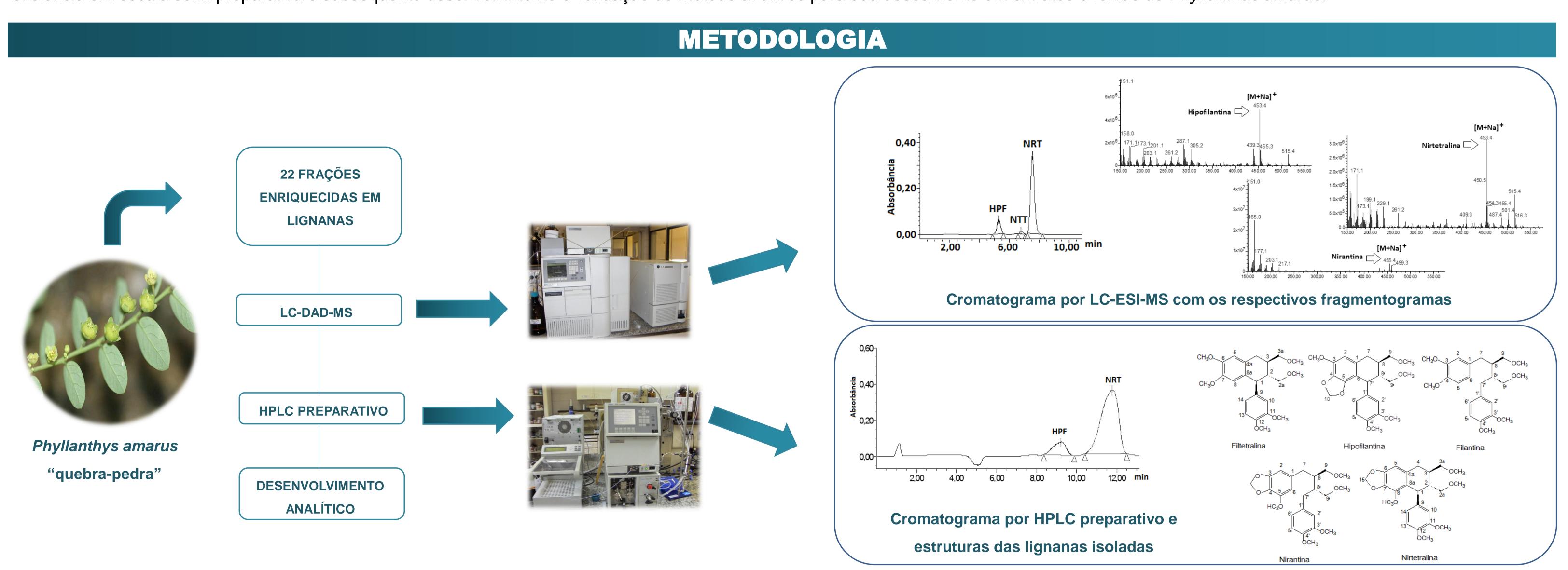
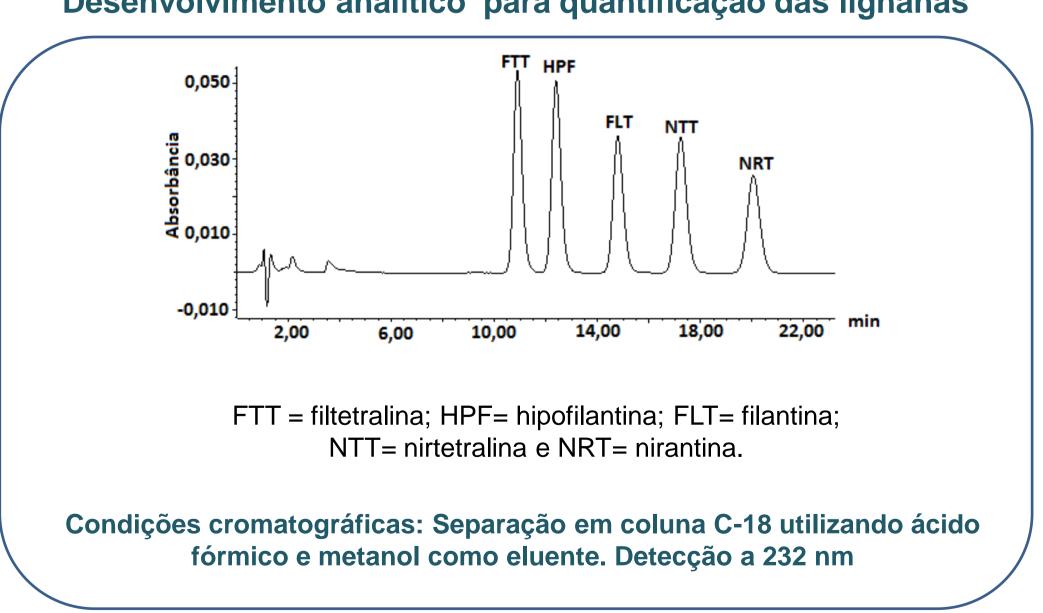


LIGNANAS EM PHYLLANTHUS AMARUS: PURIFICAÇÃO E ISOLAMENTO POR HPLC SEMI-PREPARATIVO E VALIDAÇÃO DE MÉTODO ANALÍTICO PARA SUA QUANTIFICAÇÃO


Nathalia Lopes do Carmo (Bolsista FAPESP), Vera Lúcia Garcia Rehder, Marili Villa Nova Rodrigues (Orientadora)

Divisão de Química Orgânica e Farmacêutica do CPQBA-UNICAMP

Agência Financiadora: FAPESP 2010/03134-0
Palavras-Chave: Lignanas - *Phyllanthus amarus* — HPLC nath_lopesdocarmo@hotmail.com; marili@cpqba.unicamp.br


INTRODUÇÃO

O gênero *Phyllanthus* tem sido valorizado devido às suas propriedades terapêuticas no tratamento de doenças do fígado e cálculos renais além de possuir atividade contra o vírus da hepatite B em estudos *in vitro* e *in vivo*. Entre as espécies de *Phyllanthus* contempladas na Farmacopéia Brasileira encontram-se o *P. niruri* e o *P. tenellus*, porém a inclusão do *P. amarus* ainda não foi efetuada, provavelmente pela falta de padrões e métodos analíticos que caracterizem esta espécie. A classe das lignanas presentes no gênero são ativas farmacologicamente, sendo elas: filantina, hipofilantina, nirantina e nirtetralina. Apenas a filantina e a hipofilantina são encontradas comercialmente, limitando bastante o estudo e o desenvolvimento analítico. Dessa forma, este trabalho teve como objetivo o isolamento e purificação das lignanas (filantina, hipofilantina, nirantina e nirtetralina) a partir de frações enriquecidas de *Phyllanthus amarus* utilizando a cromatografia líquida de alta eficiência em escala semi-preparativa e subseqüente desenvolvimento e validação de método analítico para seu doseamento em extratos e folhas de *Phyllanthus amarus*.

RESULTADOS E DISCUSSÃO

Desenvolvimento analítico para quantificação das lignanas

Validação do método de quantificação das lignanas utilizando HPLC com detecção a 232 nm.

Parâmetros de Validação	FILTETRALINA	HIPOFILANTINA	FILANTINA	NIRTETRALINA	NIRANTINA
Faixa linear (mg/g)	0,10 a 0,80	0,12 a 1,0	2,0 a 16,0	0,2 a 1,6	0,8 a 6,4
Seletividade	Seletivo	Seletivo	Seletivo	Seletivo	Seletivo
Linearidade (r)	0,9999	0,9998	0,9999	0,9999	1,0000
Precisão intra-corrida, n=6, (CV %)	1,9	2,1	1,5	3,1	2,4
Precisão inter-corridas, n=12 (CV %)	5,9	5,6	6,5	6,6	11,1
Exatidão F1 (n=3)	101 % recuperação	67 % recuperação	93 % recuperação	89 % recuperação	81 % recuperação
F2 (n=3)	106 % recuperação	94 % recuperação	103 % recuperação	100 % recuperação	97 % recuperação
F3 (n=3)	99 % recuperação	94% recuperação	95 % recuperação	96 % recuperação	93 % recuperação

CONCLUSÕES

A cromatografia líquida de alta eficiência utilizada para análises preparativas é uma técnica eficiente e complementar às colunas clássicas empregadas em fitoquímica para purificação de compostos com características estruturais semelhantes, como o caso das lignanas e tem mostrado sucesso para os propósitos deste trabalho. A purificação das lignanas por HPLC preparativo pode ser realizada através do uso da fase estacionária C-18 ou fenil utilizando como fase móvel a mistura de 0,1% de ácido fórmico e metanol.

A validação do método analítico para a quantificação das lignanas mostrou-se seletivo, linear, preciso e exato para determinação da filtetralina, filantina, hipofilantina, nirtetralina e nirantina, conferindo confiabilidade aos resultados quantitativos.

