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Introduction
Since the celebrated papers by Black and Scholes [Bla-Sch]
and Merton [Mer] the idea of using stochastic calculus for
modeling prices of risky assets (share prices of stock, stock
indices such as the Dow Jones, Nikkei or DAX, foreign ex-
change rates, interest rates, etc.) has been generally accep-
ted. This led to a new branch of applied probability theory,
the field of mathematical finance. It is a symbiosis of sto-
chastic modelling, economic reasoning and practical finan-
cial engineering.
In what follows, we give some definitions and then we col-
lect some basic facts needed for defining stochastic inte-
grals. A stochastic process is a natural model for describing
the evolution of real-life processes, objects and systems in
time and space. One particular stochastic process, namely
Brownian Motion, has motivated most of the development
of stochastic calculus.

Brownian Motion
1.1 Definition. Let (Ω,F , P ) be a probability space, and let
B denote the borel subsets of Rn. A random variable is a
measurable function X : Ω → Rn, i.e, a function such that
X−1(B) ∈ F for all B ∈ B.
1.2 Definition. A stochastic process X is a collection of
random variables {Xt : t ∈ T} defined on some probability
space Ω. For each fixed ω ∈ Ω, the map ω 7→ Xt(ω) is a
trajectory or a sample path of the process.
1.3 Definition. A stochastic process B = {Bt : t > 0} is
called a (standard) Brownian motion or a Wiener process if
the following conditions are satisfied:
(i) B0 = 0, i.e., it starts at zero;
(ii) t 7→ Bt(ω) is continuous almost surely;
(iii) for all times 0 < t1 < t2 < · · · < tn, the increments
Bt1, Bt2 −Bt1, Btn −Btn−1

are independent;
(iv) Bt −Bt is N(0, t− s) for all t > s > 0.
1.4 Definition. Let X be a real-valued continuous function
on [0, T ]. If the limit

〈X〉t = lim
n→∞

∑
πn3ti6t

(Xti −Xti−1
)2

exists, then t 7→ 〈X〉t is called the quadratic variation of
X .
1.5 Proposition. 〈B〉t = t almost surely.
From this, we can prove the following result.
1.6 Theorem. Let B = {Bt : t > 0} as in definition 1.3.
Then, on any finite interval

P

sup
π

∑
ti∈π

|Bti −Bti−1
| < ∞

 = 0,

i.e, the sample paths of Brownian motion has unbounded
variation almost surely.
1.7 Definition. A function X : [0, T ] → R is Holder conti-
nuous with exponent γ at the point t0 if there exists a cons-
tant K such that

|Xt −Xt0| 6 K|t− t0|γ for all t ∈ [0, T ].

It follows from a very well know theorem due to Kolmogo-
rov that for almost all ω and any T > 0, the sample path
t 7→ Bt(ω) is uniformily Holder continuous on [0, T ] for
each exponent 0 < γ < 1

2.
On the other hand, the following holds.
1.8 Theorem. For each 1

2 < γ 6 1 and almost every ω,
t 7→ Bt(ω) is nowhere Holder continuous with exponent γ.
In particular, for almost every ω, the sample path t 7→ Bt(ω)
is nowhere differentiable.

Stochastic Integral
We recall some basic facts from classical analysis in order
to understand the main difficulties in defining an integral
such as

∫ 1
0 BtdBt.

2.1 Definition. We say that X : [0, T ] → R has bounded
variation if

sup
π

∑
ti∈π

|Xti −Xti−1
| < ∞

where the supremum is taken over all partitions π of [0, T ].

2.2 Definition For X, Y : [0, T ] → R, we define the
Riemann-Stieltjes integral of X with respect to Y on [0, T ]
as ∫ T

0
XtdYt = lim

n→∞

∑
ti∈πn

Xt∗i (Yti − Yti−1
)

when such limit exists as ||τn|| → 0, and it is independent
of the choice of the sequence (τn) and their intermediate
points t∗i .
One sufficient condition for the existence of such integral is
that X be continuous and Y has bounded variation. Indeed,
there exists weaker conditions, not very well known, under
which we could define an integral such as

∫ 1
0 f (t)dBt(ω) for

a deterministic function f satisfying some nice conditions.
However, if we insist in trying to define

∫ b
a BtdBt by taking

limits of Riemann sums, we get the following result.
2.3 Proposition Let (πn) be a sequence of partitions of
[0, T ] such that ||τn|| → 0 and let 0 6 λ 6 1 be fixed.
Then

lim
n→∞

∑
ti∈πn

Bt∗i (Bti −Bti−1
)

L2(Ω)
=

B2
T

2
+

(
λ− 1

2

)
T.

It turns out that Ito’s definition of
∫ T
0 BtdBt corresponds to

the choice λ = 0, that is∫ T

0
BtdBt =

B2
T

2
− T

2
.

An alternative definition, due to Stratonovich, takes λ = 1
2,

so that ∫ T

0
Bt ◦ dBt =

B2
T

2
.

Ito’s Formula
Recall Definition 1.4. Since t 7→ 〈X〉t is a positive and mo-
notone function, the integral

∫ T
0 f (t)d〈X〉t is well-defined

in the Riemann-Stieltjes sense. We now establish the Ito’s
formula, one of the most important tools for computing sto-
chastic integrals.
3.1 Theorem (Ito’s formula). Let X : [0, T ] → R be
continuous with continuous quadratic variation 〈X〉t, and
f ∈ C2(R) a twice continuously differentiable real func-
tion. Then for each t

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)d〈X〉s

where∫ t

0
f ′(Xs)dXs := lim

n→∞

∑
πn3ti6t

f ′(Xti)(Xti+1
−Xti)

is, by definition, the Ito integral of f ′(Xt) with respect to
Xt. In short notation

df(X) = f ′(X)dX + 1
2f

′′(X)d〈X〉.

3.2 Example. Take f (x) = x2 and X = B to be Brownian
motion. Then Ito’s formula implies

B2
t = B2

0︸︷︷︸
0

+2
∫ t

0
BsdBs +

∫ t

0
d〈B〉s︸ ︷︷ ︸
t

so ∫ t

0
BsdBs =

B2
t

2
− t

2
.

3.3 Proposition. For f ∈ C1 the quadratic variation of
f (Xt) is

〈f (X)〉t =
∫ t

0
f ′(Xs)

2d〈X〉s.

3.4 Definition. Let X, Y be real-valued continuous functi-
ons on [0, T ] with continuous quadratic variations 〈X〉 and
〈Y 〉. If the limit

〈X, Y 〉t = lim
n→∞

∑
πn3ti6t

(Xti −Xti−1
)(Yti − Yti−1

)

exists, then t 7→ 〈X, Y 〉t is called the covariation of X and
Y .
Let now X = (X1, . . . , Xd) : [0, T ] → Rd be continuous
with continuous covariation

〈Xk, X l〉t =

{
〈Xk〉t , k = l
1
2[〈X

k + X l〉t − 〈Xk〉t − 〈X l〉t] , k 6= l
.

3.5 Theorem (d-dimensional Ito’s formula). For f ∈
C2(Rd) one has

f (Xt) = f (X0) +

Ito integral︷ ︸︸ ︷∫ t

0
∇f (Xs)dXs

+
1

2

d∑
k,l=1

∫ t

0
fxk,xl

(Xs)d〈Xk, X l〉s.

or, in differential form

df(Xt) = (∇f (Xt), dXt)︸ ︷︷ ︸
scalar product

+
1

2

∑
k,l

∂2f

∂xk∂xl
(Xt)d〈Xk, X l〉t

where∫ t

0
∇f (Xs)dXs := lim

n→∞

∑
πn3ti6t

(∇f (Xti)(Xti −Xti−1
))︸ ︷︷ ︸

scalar product

.

Application to Financial Markets
We consider a financial market with only one security
without interest and divided payments. This market is mo-
delled as follows:

• (Ω, (Ft)t>0, P ) is a filtered probability space, i.e.,
(Ft)t>0 is a family of σ-algebras with Fs ⊂ Ft for s 6 t,
representing the information available at time t.

• Xt = Xt(ω) is the price process of the security adapted
to the filtration (Ft), i.e., Xt is Ft-measurable for all t >

0.

• φt = φt(ω) is another stochastic process adapted to (Ft),
called a portfolio strategy. It denotes the number of sha-
res of the security held by an investor at time t in state
ω. Adaptation to (Ft) means that the investment decision
can only be based on the information available at time t.

Given the portfolio strategy φt, the value of the portfolio at
time t is of the form

Vt = φtXt + ηt = V (Xt, t)

where ηt is money account, yielding no interest.
A portfolio strategy (p.s.) is called self-financing if, after
an initial investment V0 = η0, all changes in the value of
the portfolio Vt are only due to the accumulated gains (or
losses) resulting from price changes of Xt. Formally this
means
4.1 Definition. The p.s. φt is self-financing if

Vt = V0 +
∫ t

0
φsdXs,

or, in short notation, dV = φdX .
Applying Ito’s formula to the value process V yields

dV = VxdX + V̇ dt + 1
2Vxxd〈X〉

= φdX + V̇ dt + 1
2Vxxd〈X〉.

Hence φt is self-financing if, and only if, V satisfies the
differential equation

V̇ dt + 1
2Vxxd〈X〉 = 0

for all t > 0, where V̇ = ∂
∂tV (x, t).
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