

Estudo da Formação de Estruturas Poliméricas Porosas no Sistema Ternário PHB/PDS/CHCl₃ Preparadas por

Casting com o Controle da Taxa de Evaporação do Solvente.

Ricardo Neves de Souza*, Maria Isabel Felisberti *g025042@iqm.unicamp.br

In

Instituto de Química Universidade Estadual de Campinas – UNICAMP – CPNq Blendas - Estruturas porosas - Propriedades

INTRODUCÃO

O poli(3-hidroxibutirato), PHB, é um poliéster termoplástico de origem microbiana, de baixo custo, produzido a partir de fontes renováveis. Apresenta-se como um forte candidato a substituir os plásticos de origem de petróleo, em aplicações na área médica. Entretanto, a sua alta cristalinidade limita muitas de suas aplicações. Na tentativa de se obter um material com melhores propriedades que o PHB, estudaram-se as blendas do polímero com o polí(p-dioxanona), PDS, um poliéster sintético com excelente biodegrabilidade, biocompatibilidade e flexibilidade, porém de custo elevado. Estas blendas apresentaram-se imiscíveis. Entretanto, também apresentaram uma característica interessante e importante para aplicaçõo na área médica, que é a estrutura porosa. Esta estrutura é formada durante a etapa de secagem de soluções ternárias PHB/PDS/CHCl₃ para a obtenção das blendas. Neste projeto investigou-se a influência da taxa de secagem das blendas, assim como da composição destas sobre a morfologia destas estruturas porosas varia com a composição e com a taxa de secagem das soluções terciárias. Através da calorimetria diferencial de varredura constatou-se que a taxa de secagem das blendas também influencia o grau de cristalinidade e a temperatura de fusão das fases PHB e PDS.

METODOLOGIA

MATERIAIS

-PHB homopolimero com Mn de 450.000 g/mol e temperatura de fusão de aproximadamente 180°C fornecido pela PHB do Brasil Ltda.

- PDS com temperatura de fusão de aproximadamente 100 °C fornecido pela Ethicon Inc.

RESULTADOS E DISCUSSÃO

Microscopia Eletrônica de Varredura (SEM)

Figura 1. Micrografias da blenda PHB40/PDS60 seca sob diferentes fluxos de argônio com ampliação de 500x: 4 mL/min(A); 40 mL/min(B); 80 mL/min(C); 120 mL/min(D).

Figura 2. Micrografia da blenda PHB50/PDS50 preparada a partir da solução quaternária contendo 2,5% de água.

Na figura 1 é possível observar o efeito do fluxo de argônio sobre a morfologia da blenda PHB40/PDS60. Este resultado mostra que a formação de estruturas porosas é favorecida à baixas taxas de evaporação de solvente (baixo fluxos de argônio). Na micrografía da figura 2 são observados esferulitos, nos quais também é possível identificar as lamelas. Estas lamelas são bastante similares às estruturas observadas na matriz da blenda PHB40/PDS60, figura 1, obtida sem a adição de água.

Calorimetria Diferencial de Varredura (DSC)

Figura 3. Curvas de DSC referentes a blendas preparadas sob diferentes fluxos de argônio. Primeiro aquecimento: PHB40/PDS60 (A), PHB50/PDS50 (B), PHB60/PDS40 (C). Resfriamento: PHB40/PDS60 (D), PHB50/PDS50 (E), PHB60/PDS40 (F). Segundo aquecimento: PHB40/PDS60 (G); PHB50/PDS50 (H); PHB60/PDS40 (I).

Fixando-se a composição e variando-se o fluxo de argônio, (figuras 3A, B e C) observa-se um deslocamento dos picos de fusão para temperaturas menores. Além disso, há uma tendência à diminuição da área dos picos de fusão de ambas as fases com o aumento do fluxo de argônio, indicando a diminuição do grau de cristalinidade.

Mantendo-se a composição constante e variando o fluxo de argônio (figuras 3D, E e F) observa-se o deslocamento do pico de cristalização do PHB para temperaturas menores com o aumento do fluxo de argônio. Estes resultados mostram que a fase PDS influencia a cristalização do PHB.

Quando se fixa a composição e varia-se o fluxo de argônio (figuras 3G, H e I) observa-se tanto o deslocamento dos picos de fusão para temperaturas menores (diminuição da espessura de lamela) como da área do pico (diminuição do grau de cristalinidade), tal como observado no primeiro aquecimento.

AGRADECIMENTOS

Somos agradecidos ao CNPq pelo apoio financeiro

