A MATEMÁTICA POR TRÁS DA TOMOGRAFIA COMPUTADORIZADA: ESTUDO E CRIAÇÃO DE EXEMPLOS E APLICAÇÕES NA RECONSTRUÇÃO DE IMAGENS Luciano Braga Candido / RA: 034212

bcluciano@gmail.com

DEPARTAMENTO DE RAIOS CÓSMICOS E CRONOLOGIA – IFGW – Unicamp Agência financiadora: CNPq Palavras chave: Tomografia – Reconstrução – Imagem

INTRODUÇÃO

aprofundamos o Neste projeto métodos conhecimento sobre matemáticos utilizados na reconstrução de imagens em tomografia computadorizada, criando alguns exemplos explicativos de aplicação de métodos de reconstrução. Os exemplos podem facilitar tanto o ensino, quanto o aprendizado desses métodos em cursos de Física Médica. Estudamos métodos básicos de reconstrução utilizados na tomografia computadorizada de transmissão de raios-X, exemplificando com casos particulares de reconstruções de funções previamente conhecidas.

Figura 1: Representação da distância das retas x` e do ângulo θ: cada reta representa a linha onde a Transformada de Radon irá somar as densidades de cada pixel

METODOLOGIA: A principal ferramenta matemática nesse projeto foi a Transformada de Radon (TR). Utilizamos o pacote interativo MATLAB no cálculo numérico para estudar a TR de figuras geométricas simples e de uma parametrização das estruturas internas do crânio de Shepp-Logan. Inicialmente, foram construídas matrizes NxN para discos e elipses de densidades diferentes e posteriormente, aplicamos a TR para a imagem de Shepp-Logan.

EXEMPLOS: Como primeiro exemplo, temos na Figura 3 a TR para um disco, com cortes em vários ângulos e com várias retas paralelas. Quando as retas não passam pelo disco, a imagem na TR aparece em azul escuro. Quando x' = -30, as retas começam a tocar o disco e a densidade muda, passando por vários cordas do disco, pelo seu diâmetro, até deixá-lo, do lado oposto. Por esse motivo é que vemos um padrão na forma da TR, pois, como o disco é simétrico, irá sempre haver o mesmo caminho passando pelo seu diâmetro. Quando o x' é zero, temos todas as retas passando pelo o seu diâmetro e a densidade é máxima. Um comportamento análogo é observado nas Figuras 4 e 5, para o anel em um disco e para uma elipse, respectivamente.

Figura 3: Disco e sua TR

RESULTADOS: As figuras do lado esquerdo das figuras 6 e 7 mostram retas para as quais a Transformada de Radon irá realizar as soma das densidades. Podemos verificar as densidades com relação à posição da imagem na parametrização de Shepp-Logan.

Na figura 8 mostramos o fantom Shepp-Logan, que consiste da superposição de dez elipses com densidades diferentes. A parte em branco, com maior densidade (1,0), representa o osso, onde a parte mais espessa é a testa. As duas elipses mais

Figura 2: Representação das linhas com que iremos calcular a TR para alguns ângulos

Figura 6: Corte do fantom Shepp-Logan em X=250

Figura 4: Anel branco com um disco cinza interno e sua TR

Figura 5: Elipse mais externa do Shepp-Logan e sua TR

escuras representam os ventrículos. As outras seis elipses são representações de tumores com diferentes densidades. Os valores das densidades das elipses usados para criar o fantom Shepp-Logan estão na Tabela 1. Esses valores foram usados pelos próprios Shepp e Logan na suas construções.

CONCLUSÃO: A maior contribuição para a TR do fantom de Shepp-Logan é devida aos ventrículos e à caixa craniana, pois as das outras estruturas são pequenas comparadas as essas duas.

100 -

150 -

200 -

≻ 250 -

300 -

350 -

400 -

450 -

Tabela 1: Valores característicos das elipses na					
parametrização Shepp-Logan					
Densi dade	Densi dade Semi-eixos		Posição do		Inclinação
	das elipses		centro		
А	а	b	x0	у0	Teta
1,180	0,690	0,920	0,00	0,0000	0
0,980	0,662	0,874	0,00	-0,0184	0
1,077	0,110	0,310	0,22	0,0000	-18
1,077	0,160	0,410	-0,22	0,0000	18
1,080	0,210	0,250	0,00	0,3500	0
1,080	0,046	0,046	0,00	0,1000	0
1,080	0,046	0,046	0,00	-0,1000	0
1,080	0,046	0,023	-0,08	-0,6060	0
1,080	0,023	0,023	0,00	-0,6060	0

-0.7

0.6

0.4

0.3

0.2

300

450 500

50 100 150 200 250 300 350 400

θ (graus)