

APLICAÇÃO DO POLIBUTADIENO IMOBILIZADO SOBRE SÍLICA NA EXTRAÇÃO DE AGROTÓXICOS DE UVA

Adriana Teixeira Godoy (IC), Carla Beatriz Grespan Bottoli (PQ) Instituto de Química - IQ, UNICAMP

adriana.godoy@gmail.com

extração em fase sólida - cartucho com polibutadieno - agrotóxicos

Introdução

Um dos principais problemas encontrados em análise de resíduos de agrotóxicos é conseguir atingir limites de detecção baixos. Geralmente, para aumentar a detectabilidade do método de análise utilizam-se técnicas de preparo de amostras como a extração líquido-líquido (ELL) e extração em fase sólida (EFS). A EFS é uma técnica rápida, de fácil automação e que envolve menor consumo de solventes e de amostra que a ELL. Do ponto de vista prático, a SPE comporta-se como uma cromatografia líquida empregando-se uma pequena coluna aberta, usualmente denominada cartucho de extração, o qual contem a fase sólida.

Preparar um novo sorvente para EFS contendo como fase sólida o polímero polibutadieno sorvido nos poros da sílica e entrecruzado com o peróxido de dicumila (PDC). O sorvente será aplicado na extração de agrotóxicos presentes em uva com posterior determinação cromatográfica por cromatografia líquida de alta eficiência. Preparo do sorvente Secagem de 4,0 g silica - 24 h em agnética 1 h agração de excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Fortificação da amostra Extração Va orgânica (sem semente) | Tubo de ensaio 10 g unu vortex + 15 min entrifuga + 10 min Ultrassom 3 h agitação do hexano magnética 1 h agração de excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Fortificação da amostra Extração Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 0,025g peróxido de dicumila (PDC) + 1 mL hexano: 2,5% (m/m) PDC/PBD Secagem de 4,0 g silica - 24 h em estuda 140 c excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Fortificação da amostra Extração do excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Secagem de 4,0 g silica - 24 h em excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Secagem de 4,0 g silica - 24 h em excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Secagem de 4,0 g silica - 24 h em excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Secagem de 4,0 g silica - 24 h em excesso de polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g polibutadieno (PBD) + 48 mL hexano: 2,5% (m/m) PDC/PBD Adição de 1,0 g poli

Resultados e discussões

Separação dos agrotóxicos por CLAE

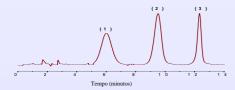
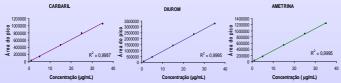



Figura 1. Cromatograma dos padrões dos agrotóxicos carbaril (1), diurom (2) e ametrina (3). Condições cromatográficas: coluna cromatográfica Waters Spherisorb® S10 C8 150x4,6 mm, fase móvel MeOH:H₂O 60:40(v/v); vazão 0,6 mL min¹¹; volume de injeção 10 μL; detecção a 254 nm; concentração dos agrotóxicos: 100 μg mL¹1.

Curvas analíticas

Figura 2. Curvas analíticas dos agrotóxicos. Soluções em concentrações de 1,0; 5,0; 15,0; 25,0 e 35,0 μg mL⁻¹ por diluição na fase móvel (MeOH:H₂O 60:40 v/v). Cada solução foi injetada em triplicata.

■ Eficiência de Extração

Tabela 1. Recuperação dos agrotóxicos obtida com o cartucho de polibutadieno *

Concentração da	Recuperação %					
solução fortificada	CARBARIL		AMETRINA		DIUROM	
0,3 μg mL ⁻¹	38,6	35,7	75,5	76,1	80,2	78,6
0,5 μg mL ⁻¹	61,8	57,3	74,0	72,4	73,1	76,0
1 μg mL ⁻¹	68,5	69,0	79,5	81,5	84,0	87,4
5 μg mL ⁻¹	67,4	53,7	80,2	79,5	86,8	88,7

* **Recuperação** = Quantidade recuperada

Ouantidade adicionada

Conclusão

- o sorvente de polibutadieno retém melhor os agrotóxicos menos polares;
- o sorvente mostrou-se eficiente para ser utilizado em cartuchos para extração em fase sólida na análise de uma matriz complexa como a uva;
- o método aplicado para a extração apresentou-se rápido e de baixo consumo de solventes orgânicos;
- os valores de recuperação para a ametrina e o diurom foram considerados bons (72,4-88,7%);
- a baixa recuperação do carbaril na amostra fortificada em menor concentração (0,3 μg mL⁻¹) pode ser melhorada com a otimização do método de extração;
- com o preparo da amostra e a técnica de extração em EFS, não se observou interferentes ou efeitos de matriz significativos para a análise em CLAE.

