

ESTUDO DO EQUILÍBRIO DE SISTEMAS DE TROCA IÔNICA BINÁRIA DE METAIS PESADOS EM COLUNA DE LEITO FIXO UTILIZANDO ALGINATO

UNICAMP

Rafael L. Salvatte¹, Sirlei J. Kleinübing² e Meuris G. C. da Silva³ ¹Bolsista PIBIC/CNPq, ²Co-orientadora e ³Orientadora UNICAMP/FEQ/DTF

INTRODUÇÃO

Um dos fatores que controlam o emprego de processos de separação através da troca iônica em colunas de leito fixo é a distribuição de equilíbrio dos íons, entre a fases sólida e fluida. Vários estudos revelaram que o alginato é um biopolímero, polissacarídeo linear produzidos pelas algas marrons e algumas bactérias com um grande potencial para a bioadsorção de metais pesados. Possui capacidade de produzir géis na presença de cátions divalentes ou trivalentes.

OBJETIVO

Comparar o desempenho dos modelos NRTL, Wilson e Margules para o cálculo do coeficiente de atividade usado para descrever o comportamento não ideal da fase sólida em sistemas de troca iônica entre cálcio por cádmio e cobre utilizando dados experimentais obtidos em sistema de leito fixo.

METODOLOGIA

✓ Preparação das esferas por emulsificação:

Solução de Alginato: 4 g de alginato/100 mL água destilada;

Solução de CaCl₂ : 6,0% de CaCl₂, 45,5% de etanol, 45,5% de água destilada e 3,0% de ácido acético (porcentagens em massa);

Soluções a 60 °C e Agitação a 1100 rpm.

✓ Determinação do pH de estudo:

Obtido através da determinação do pH_{ZPC} do bioadsorvente (pH onde as cargas superficiais se igualam a zero) e através da especiação química do Cd (determinação do pH onde passa a ocorrer formação de precipitados).

✓ Procedimento experimental:

O sistema de coluna de leito fixo, conforme a Figura 1.

Amostras foram coletadas em intervalos de tempos pré-determinados

Vazão selecionada de 3 ml/min, até que o equilíbrio, conforme Tabela 1.

As análises de concentração de Ca, Cu e Cd > espectrofotômetro de absorção atômica.

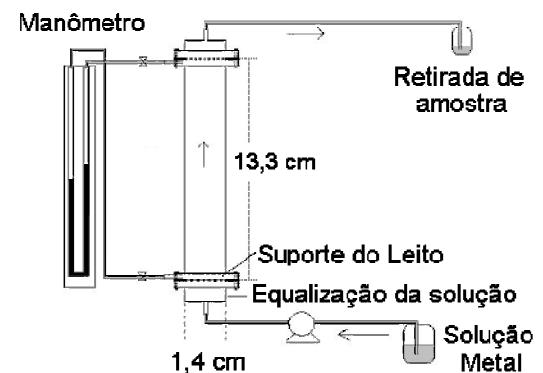


Figura 1 – Coluna de leito poroso.

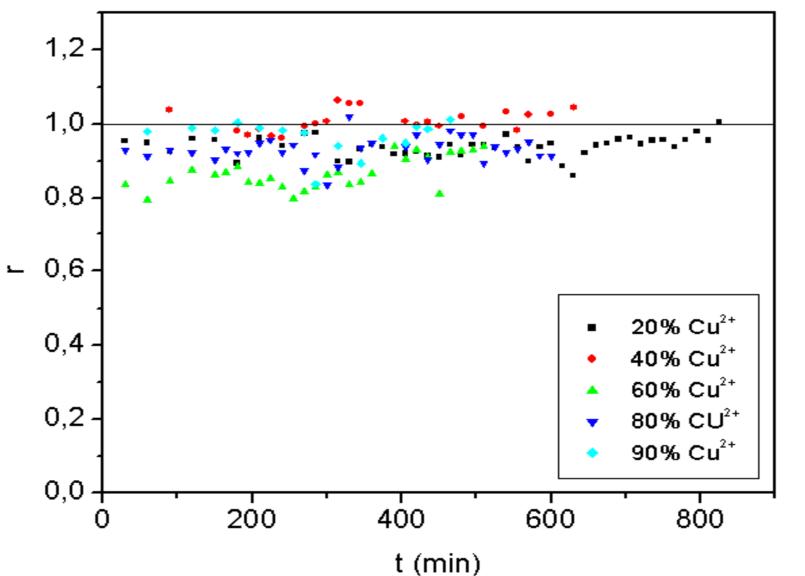
Tabela 1 – Concentrações de entrada de Cd, Cu e Ca das soluções.									
Concentração	Fração equivalente				Concentração	Fração equivalente			
(mmol/L)	Cu ²⁺	Ca ²⁺	Cd ²⁺	Ca ²⁺	(mmol/L)	Cu ²⁺	Ca ²⁺	Cd ²⁺	Ca ²⁺
3,1473	0,90	0,10	0,90	0,10	4,7210	0,90	0,10	0,90	0,10
3,1473	0,80	0,20	0,80	0,20	4,7210	0,80	0,20	0,80	0,20
3,1473	0,60	0,40	0,60	0,40	4,7210	0,60	0,40	0,60	0,40
3,1473	0,40	0,60	0,40	0,60	4,7210	0,40	0,60	0,40	0,60
3,1473	0,20	0,80	0,20	0,80	4,7210	0,20	0,80	0,20	0,80

✓ Determinação dos parâmetros termodinâmicos:

Realizou-se uma análise para verificar se havia estequiometria entre a quantidade adsorvida de cádmio e cobre e a quantidade de cálcio dessorvida.

AGRADECIMENTOS Ao CNPq/PIBIC e à FAPESP pelo apoio. Para os dois sistemas binários, foram consideradas as reações de troca iônica de Cd-Ca e de Cu-Ca, com as respectivas equações para a constante de equilíbrio entre resina e solução. Conhecendo o valor dos coeficientes de atividade para a fase líquida obtidos pelo modelo de Bromley, pode-se determinar a constante de equilíbrio e os parâmetros dos modelos de Wilson, Margules e NRTL para descrição do comportamento não-ideal da fase sólida através da minimização da função objetivo.

$$f = \frac{C_{CuCd}|_{Z=L} + C_{Ca}|_{Z=L}}{C_0} \qquad F = \sum_{i=1}^{n_exp} (Y_{j_i}^{EXP} - Y_{j_i}^{MOD})^2$$


RESULTADOS

Diâmetro médio das esferas de 960 μm, adequado à utilização em leito fixo. A umidade determinada pelo método de secagem foi de 95%. A partir da análise de pH_{ZPC} e pela especiação química, verificou-se a necessidade de trabalhar em pH igual ou inferior a 5,0 para o Cu²⁺, enquanto para o Cd²⁺ em pH inferior a 8,0. No entanto como a proposta é utilizar uma mistura destes metais, ficou definido pela especiação química, o pH de 4,5.

Estequiometria da troca para todos os pontos experimentais: Figuras 2 e 3.

Valores menores que 1 indicam adsorção somente de Cd ou de Cu, porém a quantidade somente adsorvida é pouco significativa se comparada a quantidade de íons Cd e Cu trocados por íons Ca.

Os coeficientes de atividade na fase sólida, para os pares binários Cu-Ca e Cd-Ca: calculados para os três modelos e encontram-se na Tabela 2.

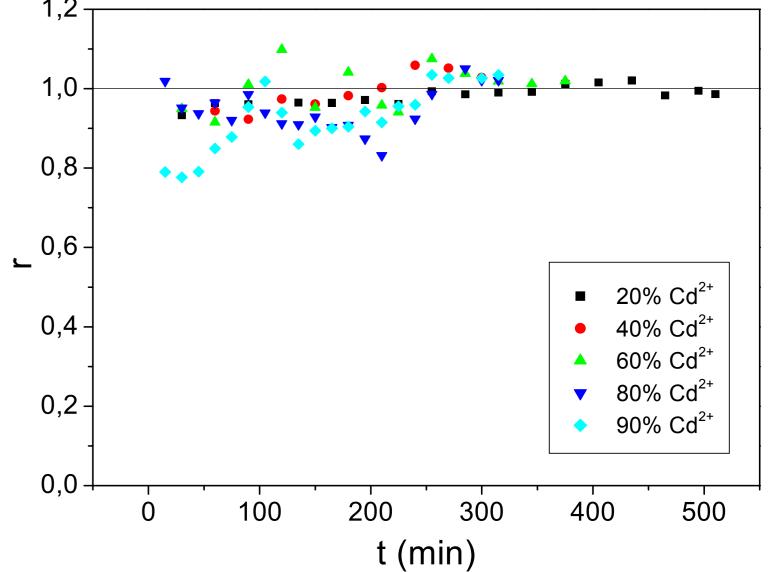


Figura 2 - Razão entre concentrações de Cu²⁺ e Ca²⁺.

Figura 3 - Razão entre concentrações de Cd²⁺ e Ca²⁺.

Tabela 2 – Parâmetros para a fase sólida pelos modelos de Wilson, Margules e NRTL. Cd-Ca Cd-Ca Modelo Parâmetro Cu-Ca Modelo Parâmetro Cu-Ca γ12 0,902479 1,15427 T12 1,17858 0,963579 γ21 0,627269 1,29110 T21 Wilson 0,598306 1,06736 **NRTL** Keq 0,279038 0,563961 1,08069 1,13401 A C -0,183464 0,239141 0,680661 0,286718 Keq D -0,0679794 -0,944248 Margules 0,572204 Keq 0,281341

- CONCLUSÃO

O método de emulsificação é bastante eficiente para obtenção de esferas de alginato mediante controle das condições de temperatura, montagem dos equipamentos e agitação.

Observou-se uma troca iônica equimolar, tanto para a troca do cálcio por cádmio quanto por cobre. Os valores obtidos para razão entre as quantidades de íons trocáveis de Cd/Ca e Cu/Ca foram próximos a 1, mostrando a predominância do processo de troca iônica e ausência de competição entre os íons metálicos pelos sítios ativos do alginato. Alguns valores menores que 1 foram observados em concentrações maiores de cádmio, demonstrando que houve adsorção do metal, principalmente nas primeiras horas dos ensaios cinéticos.

Os três modelos utilizados, Wilson, Margules e NRTL, mostraram-se satisfatórios para modelagem termodinâmica da fase sólida.