

ESTUDO E ANÁLISE DE ATUADORES ELETROMAGNÉTICOS

UNICAMP

Bolsista: Ricardo Ugliara Mendes Orientadora: Katia Lucchesi Cavalca FACULDADE DE ENGENHARIA MECÂNICA

Agencia de fomento: CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico Atuador Magnético - Análise Modal - Excitação Sem Contato - Máquinas Rotativas

Introdução

Com o desenvolvimento da Indústria surgiu a necessidade de um funcionamento seguro e confiável. Nesse sentido, a manutenção preditiva tem sido amplamente utilizada. A análise modal constitui uma técnica amplamente empregada no estudo dinâmico de estruturas, porém há uma limitação na análise de dinâmica de rotores a altas velocidades, que consiste no excesso de ruído gerado no contato da conexão da fonte de excitação externa com o rotor. Neste sentido, o atuador magnético surge como uma possível solução pois possibilita a excitação do sistema sem contato.

Figura 5 - Três diferentes condições de

- circular .

superfícies no cálculo da força magnética: (S1)

plana – plana, (S2) plana – circular e (S3) circular

Metodologia

Figura 1 – Esquema do Atuador Magnético

Figura 2 – Bancada utilizada em testes experimentais

A Figura 3 mostra o modelo completo do sistema, com cada um dos subsistemas elétrico, magnético e mecânico. Tendo como base os sistemas elétrico e magnético foi calculada a força exercida pelo atuador. Esta força é aplicada ao sistema mecânico com a finalidade de excitar a estrutura.

Figura 4 – Densidade de campo magnético:(a) bobina localizada no braço direito; (b) bobina igualmente distribuída em ambos os braços do núcleo.

Tabela 1 - Influência do Perfil do Pólo no cálculo da força resultante

Geometria	(S1)	(S2)	(S3)
Força (N) - T.T.M.	219,21	94,33	178,99
Força (N) - P.T.V.	196,38	102,44	187,64
Força (N) - Equação	160,97	143,16	181,23

O caso (S3) apresentou melhor magnética, estimativa da força empregando-se a equação, quando comparada aos valores obtidos na simulação numérica.

A densidade de campo magnético foi obtida utilizand sensores de efeito hall. Para analisar a influência da posição dos sensores, foi feito um mapeamento do pólo magnético. Em todas as geometrias foi observado o efeito de borda. Na geometria S2 o fluxo magnético é maior no centro do pólo pois nessa região o air-gap é menor. Como a geometria S3 foi utilizada, uma análise realizada no centro de seu pólo revelou que o erro máximo na estimativa da força utilizando o maior e o menor valor para o campo magnético foi de aproximadamente 12%.

Figura 3 – Modelo do atuador magnético

E a partir do sistema

mecânico, utilizando a $M \overset{\text{\tiny obs}}{\longrightarrow} K \cdot x = F_m$ Lei de Newton:

Foi criado um modelo em elementos finitos do atuador utilizando-se o software Ansys. Com este modelo foi possível realizar estudos sobre a localização da bobina, a densidade de campo magnético e o valor da força magnética obtida. O modelo permite o cálculo da força por dois métodos: Tensor de Tensões de Maxwell (T.T.M.) e Princípio do Trabalho Virtual (P.T.V.).

A simulação do atuador magnético a partir dos modelos dos sub-sistemas foi feita em MatLab – Simulink. Em seguida foi utilizado um controlador proporcional para verificar sua influência no sistema.

Resultados e Discussões

A Figura 4a mostra a densidade de campo magnético obtido com o atuador contendo uma bobina com N=830 espiras, localizada no braço direito do material magnético.A Figura 4b traz a mesma bobina, porém, distribuída igualmente nos dois braços do material magnético. Podemos observar que na Figura 4b a obtenção da força

(a) (C) Figura 6 – Mapeamento da densidade de fluxo magnético para as 3 geometrias simuladas: (a) Geometria S1, (b) Geometria S2, (c) Geometria S3.

O modelo em MatLab – Simulink obteve uma banda de passagem de 112 Hz. O controlador proporcional melhorou parâmetros de desempenho do sistema como tempo de subida, tempo de acomodação e erro estacionário.

Conclusões

Os resultados simulados mostram que a disposição das bobinas e o formato do pólo do atuador têm grande influência no cálculo da força magnética. O mesmo pode ser dito para a região de medição do campo magnético. Neste sentido, o sistema que apresentou melhores resultados foi o atuador com as bobinas distribuídas igualmente em ambos os lados e a configuração circular-circular para a interação pólo do atuador e luva. Além disso, há indicação de que a região central do pólo é a localização mais indicada para o posicionamento do sensor hall para medição do campo magnético. O controlador se mostrou importante na medida em que melhora sensivelmente o desempenho do sistema, principalmente se o atuador magnético for utilizado em operações de freqüência muito elevada.

Referências Bibliográficas

CASTRO, H.F., FURTADO, R.M., CAVALCA, K.L., PEDERIVA, R., BUTZEK, N. and NORDMANN, R., 2007. "Experimental Performance Evaluation of Magnetic Actuator used in

