

# CARACTERIZAÇÃO DE NANOTUBOS DE CARBONO POR MICRO-RAMAN E AFM



# Sergio Augusto V. Jannuzzi\*, Mara Adriana Canesqui, Stanislav Moshkalev

sergio@ccs.unicamp.br

CENTRO DE COMPONENTES SEMICONDUTORES – CCS – Universidade Estadual de Campinas Financiamento: PIBIC/CNPq.

Palavras-chave: Nanotubos de carbono – Espectroscopia Raman – Microscopia de força atômica

# Introdução

A técnica de espalhamento Raman é amplamente utilizada para caracterização de objetos nanoestruturados como nanotubos de carbono e grafeno (folhas finas de grafite). A associação entre espectroscopia micro-Raman e microscopia de força atômica permite investigação da morfologia, da distribuição espacial, de propriedades eletrônicas e estruturais de objetos nanoestruturados. A correlação dessas características é de fundamental importância para o aprofundamento do conhecimento de tais sistemas e para a identificação de suas possíveis aplicações na construção de dispositivos microeletrônicos e sensores químicos e físicos.

## Metodologia

#### Crescimento dos nanotubos:



Análise: microscópio NTEGRA Spectra NT-MDT com espectrômetro Raman e módulo para microscopia de varredura por sonda.



Figura 1: esquema do microscópio utilizado: amostra em suporte transparente pode ser analisada por Raman confocal e/ou por AFM.

• SWNT tem uma componente nas bandas D e G'. DWNT tem duas componentes nas bandas D e G'.

• Nanotubo semicondutor: banda tipo Lorentziana; metálico: tipo BWF.

• A qualidade dos nanotubos é proporcional à razão entre as intensidades da bandas G e D.



Figura 2: microscopia Raman confocal de nanotubos de carbono de parede dupla e simples (direita) e espectro Raman dos pontos indicados (esquerda).

| Tabela 1. resultados        | la análise dos es | spectros Raman | mostrados n  | a Fioura 2   |
|-----------------------------|-------------------|----------------|--------------|--------------|
| <b>Labera L</b> resultation | la analise dos es | spectros maman | mostratios n | a i iguia 2. |

| Pontos    | 2            | 3            | 4            | 5        | 6        | 7        | 8            | 9            |
|-----------|--------------|--------------|--------------|----------|----------|----------|--------------|--------------|
| Nanotubo  | SWNT         | DWNT         | ambos        | DWNT     | DWNT     | DWNT     | DWNT         | ambos        |
| Caráter   | Semicondutor | Semicondutor | Semicondutor | Metálico | Metálico | Metálico | Semicondutor | Semicondutor |
| Qualidade | Média        | Média        | Alta         | Baixa    | Baixa    | Baixa    | Alta         | Média        |
| $I_G/I_D$ | 8,0          | 8,8          | 45,7         | 1,3      | 1,2      | 1,4      | 33,6         | 11,2         |

## **Conclusão**

O método de crescimento de nanotubos de carbono rendeu DWNT metálicos de baixa qualidade dispostos em forma de alça e SWNT e DWNT semicondutores de maior qualidade dispostos em feixes lineares.

# Agradecimentos

Dra. Carla Veríssimo – imagem SEM. Pessoal do CCS. Amostra DWNT – Helsinki University of Technology. CNPq.

# **Resultados**