

MEDIDOR DE DENSIDADE DE POLÍMEROS

Erickson Tadashi Hatanaka (erickhatanaka@gmail.com)
Prof. João Sinézio C. Campos (sinezio@feq.unicamp.br)
Dep. Tecnologia de Polímeros – FEQ – UNICAMP

Palavras-chave: Materiais – Polímeros - Densidade

1. Introdução

Em todas as áreas de aplicações, os materiais poliméricos, comumente conhecidos como plásticos, vêm ganhando espaço em substituição aos materiais tradicionais (metálicos, madeira e vidro).

Neste sentido uma ampla gama de equipamentos tem sido desenvolvida no sentido de auxiliar na caracterização elétrica e mecânica, elucidando assim suas diversas aplicações.

Neste trabalho montou-se a técnica da balança hidrostática para medida de densidade de polímeros, utilizando-se uma balança analítica.

O procedimento básico é suspender o corpo de prova (amostra) e mergulhá-lo em um líquido de densidade conhecida, o qual colocado sobre uma balança analítica, quantifica-se a força de empuxo resultante. Por meio de equações matemáticas (física básica) obtêm-se os valores de densidades de materiais.

Objetivos:

- -Quantificar a densidade de materiais poliméricos;
- -Auxiliar no desenvolvimento de alunos em iniciação científica;
- -Auxiliar medidas de densidade em trabalhos científicos e industriais;
- -Disponibilizar uma técnica simples de medidas de densidade de materiais;
- -Auxiliar na formação de pessoal qualificado em ciências;
- -Dar apoio em linhas de pesquisas envolvendo medidas de densidade.

Justificativas:

- ✓ Equipamento simples e de fácil instalação;
- ✓ Plásticos são de fundamental importância no contexto atual;
- ✓ Caracterização de materiais;

2. Metodologia

A montagem do sistema é esquematizada na figura 2.1, onde se pode observar a balança analítica, contendo sobre ela um béquer e um suporte onde se coloca a amostra do material, e posteriormente esta é mergulhado no líquido contido no béquer. Ressalta-se que qualquer líquido de interesse pode ser utilizado.

Utilizou-se também várias amostras de materiais poliméricos, juntamente com um amostra metálica, de Latão, cuja densidade é muito bem definida.

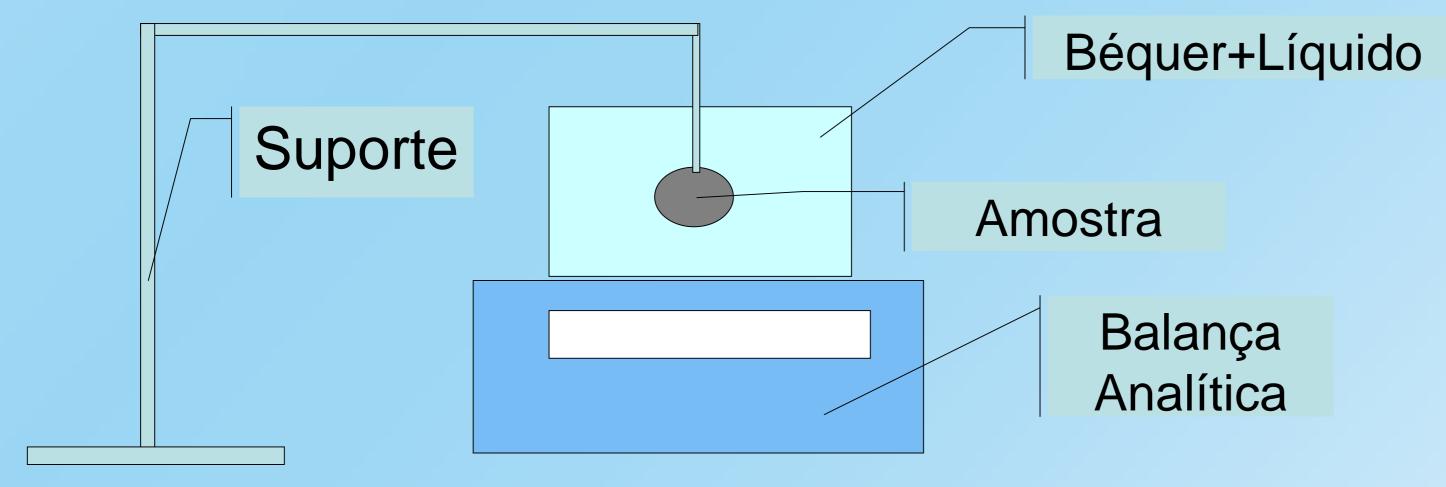


Fig.2.1-Diagrama ilustrativo do aparato experimental.

3. Resultados e Discussões

$$D = \frac{A}{E} \rho H_2 O$$

A equação acima é a equação utilizada no presente trabalho, onde A é o peso da

amostra, E é o empuxo da mesma, pH2O é a densidade da água e D por sua vez é a densidade da amostra. No sentido de testar o método dado pelo dispositivo aqui montado e da equação desenvolvida para cálculo da densidade de materiais uma amostra de Latão foi utilizada para calibração.

A medida de densidade se mostra bastante simples, sendo todos os fatores presentes na equação (1) de fácil obtenção.

Tabela 1- Resultados experimentais utilizando o material Latão

Massa	Empuxo	ρ H2O	P	Δρ
(g)	(g)	(g/cm3)	(g/cm3)	(g/cm ³)
24,4	2,9	0,9975	8,4	0,3

Tabela 2 – Resultados experimentais utilizando materiais poliméricos

Polímeros	ρ1 (g/cm³)	ρ2 (g/cm ³)	Desvio padrão	Média
PE	0,921	0,910	0,008	0,916
PP	0,913	0,910	0,002	0,912
PBT	1,335	1,328	0,005	1,331
Nylon + Fibra de				
Vidro	1,88	1,81	0,05	1,84
PBT+Fibra de				
Vidro	1,50	1,46	0,03	1,48

4. Conclusões

Com base nos ensaios experimentais realizados, conclui-se que:

- -O medidor proposto é um bom aparelho para medição de densidades de compostos poliméricos;
- -O dispositivo proposto medidas de densidade é confiável e apresenta boa precisão (5%);
- -A equação matemática desenvolvida satisfaz as condições experimentais;
- -O dispositivo é de fácil montagem e manuseio.

5. Referência Bibliográficas

- ✓ Blass, Arno; Processamento de polímeros; Florianópolis: Ed. Da UFSC, 1985;
- ✓ Sears, F.; Zemansky M. W.; Física Vol. 1; Rio de Janeiro, 1973- Traduzido pelo professor José de Lima Accioli;
- ✓ Norton, L. Robert; Machine Design An integrated Approach, Second Edition, Worcester Polytechnic Institute. 2000.

Agradecimentos

Ao CNPq/PIBIC/UNICAMP pela bolsa concedida.