

MONITORAMENTO DOS RIBEIRÕES TABAJARA E PIRES NO MUNÍCIPIO DE LIMEIRA - SP

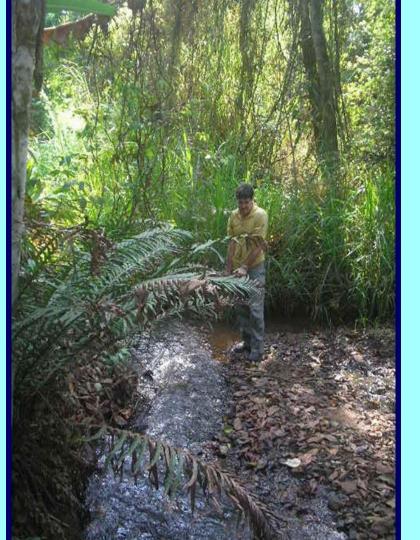
Ruiz, T. D. S.; Reganhan-Coneglian, C. M.

Laboratório de Ecotoxicologia Aquática e Limnologia - LEAL Centro Superior de Educação Tecnológica CESET, Cx. Postal 456 Universidade Estadual de Campinas UNICAMP, CEP 13484-332, Limeira, SP, Brasil Agência financiadora: SAE - UNICAMP

Palavras-chave: Ribeirão Tabajara - Ribeirão Pires - Qualidade de água Tabataruiz@gmail.com.

INTRODUÇÃO

O ribeirão Pinhal é um dos principais cursos d'água que percorrem o município de Limeira, estado de São Paulo e apresenta grande importância, pois é utilizado como manancial alternativo para o abastecimento de água da cidade. A bacia do ribeirão do Pinhal é composta por três cursos d'água principais: o ribeirão dos Pires (18 Km de extensão), o ribeirão Tabajara (17 Km de extensão) e o ribeirão Pinhal (37 Km de extensão) que juntos formam a represa do Tatu. Esta bacia possui grande área ocupada pela agricultura, predominando o cultivo de cana-de-açúcar e o de frutas cítricas. Este trabalho teve como objetivo monitorar a qualidade das águas dos ribeirões Tabajara e Pires, mediante análise de parâmetros físico-químicos, microbiológicos e ensaios ecotoxicológicos.


METODOLOGIA

As amostras foram coletadas em sete estações distintas da bacia do ribeirão Pinhal, sendo elas: El Nascente ribeirão Pires, E2 - Foz ribeirão Pires, E3 Nascente ribeirão Tabajara e E4 Foz ribeirão Tabajara, no período de agosto de 2007 a maio de 2008, em campanhas bimestrais, totalizando seis coletas. Foram medidos no momento da coleta utilizando sonda YSI 556 os parâmetros pH, condutividade, temperatura e oxigênio dissolvido. Turbidez, alcalinidade total, dureza, demanda bioquímica de oxigênio (DBO₅), demanda química de oxigênio (DQO), fósforo total e série de nitrogênio foram analisados de acordo com metodologia descrita em APHA (1998). Os testes de toxicidade aguda (NBR 13373/2005), com organismo-teste Daphnia similis, e toxicidade crônica (NBR 12713/2004) com organismo-teste Ceriodaphnia dubia, foram realizados de acordo com as referidas normas da ABNT. Os ensaios foram desenvolvidos no Laboratório de análises Físico-químico de águas e águas residuárias e no Laboratório Ecotoxicologia Aquática e Limnologia, no Centro Superior de Educação Tecnológica CESET, Universidade Estadual de Campinas UNICAMP, Limeira, São Paulo, Brasil.

E1

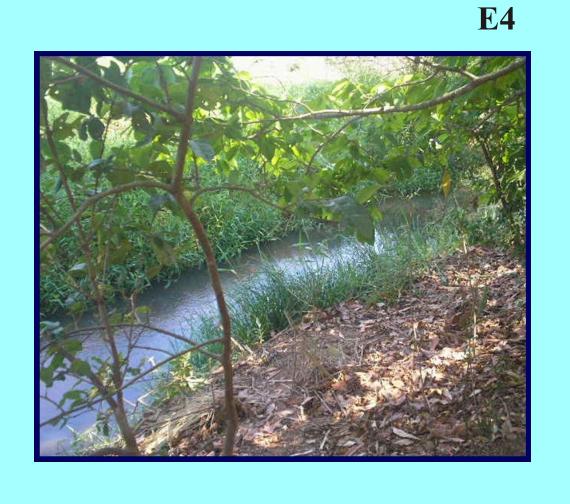


Figura 1 Estações de coleta na bacia do ribeirão Pinhal

E3

RESULTADOS E DISCUSSÕES

Tabela 1 Resultados médio, máximo e mínimo obtidos nos parâmetros analisados

		357/2005	E1	E2	E3	E4
рН	Máximo	6,0 a 9,0	8,54	7,47	7,76	7,16
	Mínimo		6,04	5,96	4,97	6,07
DQO [mg O ₂ .L ⁻¹]	Média		25	29	40	39
	Máximo		41	72	99	128
	Mínimo		17	17	<ld< td=""><td>2</td></ld<>	2
DBO [mg O ₂ .L ⁻¹]	Média	até 5 mg/L O ₂	12	13	19	9
	Máximo		45	58	53	39
	Mínimo		<ld< td=""><td>1</td><td>1</td><td><ld< td=""></ld<></td></ld<>	1	1	<ld< td=""></ld<>
COR [mg.L ⁻¹ PtCo]	Média	até 75 mg/L Pt/L	134	119	95	162
	Máximo		308	182	111	324
	Mínimo		63	70	81	47
TURBIDEZ [NTU]	Média	até 100 NTU	18	15	10	22
	Máximo		51	19	13	56
	Mínimo		7	8	7	5
CONDUTIVIDADE	Média		96	79	36	33
CONDUTIVIDADE [µS.cm ⁻¹]	Máximo		128	84	39	37
	Mínimo		82	71	332	29
OD [mg O ₂ .L ⁻¹]	Média	acima de 5 mg/L O2	5,4	5,0	5,7	5,2
	Máximo		7,1	6,9	7,1	6,5
	Mínimo		3,5	4,0	4,8	4,1
NITRITO [µS.cm ⁻¹]	Média	1,0 mg/L N	0,06	0,13	0,01	0,01
	Máximo		0,16	0,4	0,01	0,01
	Mínimo		0,01	0,01	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NITRATO [mg.L ⁻¹ NO ⁻³ - N]	Média	10,0 mg/L N	0,50	0,58	0,15	0,16
	Máximo		0,49	0,80	0,27	0,26
	Mínimo		0,07	0,27	0,04	0,04
NITROGÊNIO	Média	3,7 mg/L	0,21	0,22	0,15	0,13
AMONIACAL	Máximo	N para pH	0,44	0,37	0,67	0,19
[mg.L ⁻¹ NO ⁻³ - N]	Mínimo	≤ 7,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NTK [mg.L ⁻¹ - N]	Média		0,43	0,16	0,15	0,13
	Máximo		1,52	0,25	0,34	0,22
[IIIg.L - IN]	Mínimo		0,07	0,05	0,04	0,03
FÓSFORO	Média	0,1 mg/L P	0,12	0,06	0,10	0,08
[mg P.L ⁻¹]	Máximo		0,45	0,16	0,36	0,25
	Mínimo		<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
DUREZA [mg.L ⁻¹ CaCO ₃]	Média		22	24	16	13
	Máximo		28	28	18	17
	Mínimo		18	20	13	10
ALCALINIDADE	Média		19	21	8	11
TOTAL [mg.L ⁻¹ CaCO ₃]	Máximo		25	25	9	15
	Mínimo		13	18	7	9

A partir dos resultados obtidos pode-se comparar com o especificado pelo CONAMA 357/2005 para rios de classe II, evidenciando-se que entre os parâmetros físico-químicos a análise de fósforo total se mostrou fora do especificado em todos os pontos, estando os demais parâmetros físico-químicos de acordo com a referida legislação.

Os testes ecotoxicológicos tem sido cada vez mais recomendado para estudos da qualidade do ambiente e também para demonstrar os possíveis efeitos adversos de produtos químicos que afetam os organismos.

Tabela 2 Resultados dos bioensaios de toxicidade com o organismo-teste *Daphnia similis* (ensaio agudo) e *Ceriodaphnia dubia* (ensaio crônico).

		<u>E1</u>	E2	E3	<u> </u>
1ª Coleta	Teste agudo (%)	NT	NT	NT	13
set/07	Teste crônico	NT	NT	NT	NT
2ª Coleta	Teste agudo (%)	27	20	NT	33
out/07	Teste crônico	TC	NT	TC	TC
3ª Coleta	Teste agudo (%)	40	NT	NT	6,7
dez/07	Teste crônico	TC	NT	NT	TC
4ª Coleta	Teste agudo (%)	NT	NT	NT	NT
fev/07	Teste crônico	TC	NT	NT	NT
5ª Coleta	Teste agudo (%)	NT	NT	NT	NT
mar/08	Teste crônico	NT	NT	NT	NT
6ª Coleta	Teste agudo (%)	47	NT	6,7	6,7
mai/08	Teste crônico	TC	NT	NT	NT

NT Não tóxico TC- Toxicidade crônica

Nos ensaios ecotoxicológicos realizados nos ribeirões as amostras apresentaram toxicidade aguda para a nascente do Ribeirão Pires mediante o organismo-teste Ceriodaphnia dubia e toxicidade crônica para nascente do Ribeirão Tabajara e foz do Ribeirão Tabajara, para o organismo-teste Ceriodaphnia dubia. Evidenciando sua maior sensibilidade para produtos tóxicos, visto que o mesmo ponto não demonstrou efeito agudo para Daphnia similis.

CONCLUSÃO

A toxicidade crônica detectada nos ensaios da bacia para o período analisado comprovam que as águas sofreram alterações na qualidade. Os resultados demonstram que o organismo-teste Ceriodaphnia dubia, sofreu efeito de algum composto presente nas amostras apontando assim toxicidade crônica em todos os pontos e aguda na E1. Atividades agrícolas, ausência de mata ciliar, loteamento de áreas para chácaras de recreio no entorno dos corpos d'água são alguns dos fatores que podem ter contribuído para o carreamento de contaminantes que influenciam na deterioração da qualidade das água.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ABNT NBR 13373 (2005) ECOTOXICOLOGIAAQUÁTICA. TOXICIDADE CRÔNICA Método de ensaio com Ceriodaphnia ssp (Crustacea, Cladocera) Rio de janeiro, 15p.
- 2. ABNT NBR 12713 (2004) ECOTÒXICOLOGIA AQUÁTICA. TOXICIDADE AGUDA Método de ensaio com Daphnia ssp (Crustacea, Cladocera) Rio de janeiro, 21p.
- Método de ensaio com Daphnia ssp (Crustacea, Cladocera) Rio de janeiro, 21p 3. Águas de Limeira - Disponível em http://www.aguasdelimeira.com.br
- 4. CONAMA Resolução n°357, Brasil Ministério do Meio Ambiente MMA. Conselho Nacional do Meio Ambiente Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. De 17/03/2005.
- 5. APHA American Public Health Association. Standard Methods for the Examination of Water and Wastewater. 20a ed. Washington, 1998.