

ESTUDO DA INTERAÇÃO DE NANOTUBOS DE CARBONO **COM ACIDO HÚMICO: ESTABILIDADE E** CARACTERIZAÇÃO EM MEIO AQUOSO.

Renan P. ALMEIDA¹*(Bolsista FAPESP); Diego STÉFANI¹; Antônio G. SOUZA FILHO²; Oswaldo L. ALVES¹

¹Laboratório de Química do Estado Sólido, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo – Brasil. ²Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará – Brasil. Palavras Chave: Nanotubos de carbono – Ácido húmico – Matéria orgânica natural. *renan.almeida88@gmail.com; http://lqes.iqm.unicamp.br

Introdução

Poucos compostos químicos migraram da academia para a indústria com tamanha rapidez como os nanotubos de carbono. Sua produção industrial cresce em uma velocidade surpreendente, e o Brasil está empenhado na construção de sua primeira fábrica. Neste contexto, será gerada uma grande quantidade de efluentes e dejetos oriundos dessa indústria que certamente deverão ser bem conhecidos, controlados e tratados. Dessa forma, toma-se por necessário antecipar os estudos das interações existentes entre os nanotubos e uma fração importante do solo: os ácidos húmicos, visando não só entender a natureza destas interações como também uma forma de minimizá-las. Nesse trabalho, estudou-se as características físico-químicas de diferentes nanotubos de carbono e suas interações com o ácido húmico.

Resultados

(A) Nanotubo de carbono de parede simples; (B) Nanotubo de carbono de paredes múltiplas; (C) Dopagem do nanotubo de carbono com nitrogênio; (D) Estrutura proposta dos ácidos húmicos.

Experimental

1-)Determinação da razão (NTC:HA) para formação de uma suspensão estável.

Partindo de 250µg de nanotubos foram pesadas quantidades de ácido húmico de modo a obter razões segundo a tabela 1:

Tabela 1: Massas de ácido húmico para determinação da razão ideal:

Razão	1:1	1:5	1:10	1:15	1:20	1:30
Massa HA	250μg	1,25mg	2,5mg	3,75mg	5mg	7,5mg

Foi feita uma homogeneização em estado sólido, a mistura foi dissolvida em água deionizada e submetida a sonicação por 5 minutos. Então a absorbância da suspensão foi obtida a 450nm e subtraída de um controle de ácido húmico também preparado.

2-)Estudo da estabilidade das suspensões a partir de variações do pH e de eletrólitos interferentes:

A partir da razão ideal, foi preparada uma solução de nanotubos e ácido húmico em estado sólido, então 3mg foram dissolvidos em 10mL de água deionizada e sonicados por 5 minutos. Os parâmetros que foram estudados estão apresentados na tabela 2:

Tabela 2: Parâmetros utilizados para estudo da estabilidade das suspensões:

Concentração de MgCl2(mmol/L): 0,1; 1,0; 10 Concentração de MgCl₂(mmol/L): 0,1; 1,0; 10 (C) 1,0 _ (D) 0,8 0,8 </pr <° 0,6 MgCl₂ MgCl, \mathbf{A} – 0,1 [°]mM 0.4 0,4 — 1,0 mM • 1,0 mM 🗕 10 mM 🗕 10 mM 0,2 0,2 60 60 20 40 20 40 Tempo (h) Tempo (h)

Gráficos de estabilidade em função de: (A) pH para MWNT; (B) pH para CNx; (C) concentração de MgCl₂ para MWNT; (D) concentração de MgCl₂ para CNx

Espectroscopia Raman:

Espectros Raman para as amostras de nanotubos puros e com ácido húmico: (A) Nanotubos de paredes múltiplas; (B) Nanotubos dopados com nitrogênio; (C) Nanotubos de paredes simples.

Tabela 3: Razão das intensidades das bandas D/G para cada amostra:

Amostra	MWNT	MWNT+HA	CNx	CNx+HA	SWNT	SWNT+HA
Intensidade D/G	1,22	1,09	0,83	0,86	0,22	0,22

pH:	3 5	7	9 11
[NaCI](mmoIL ⁻¹⁾	0,1	1	10
[MgCl ₂](mmolL ⁻¹)	0,1	1	10

Foi medida a absorbância a 450nm nos seguintes períodos após sonicação: 0h, 3h, 6h, 24h, 48h e 72h.

3-)Caracterização das suspensões:

Foi preparada novamente uma solução estoque, a partir da razão ideal e essa solução foi filtrada e seca a pressão reduzida. Foram feitas as seguintes análises de caracterização:

- Análise Térmica(TGA/DTA)
- Espectroscopia Raman
- Análise elementar de H, C e N •

Resultados

Determinação da razão ótima NTC:HA para formação de uma suspensão estável

Análise Elementar:

Tabela 4: Dados obtidos pela análise elementar de cada amostra:

Amostra	Ácido Húmico(HA)	MWNT	CNx	MWNT+HA	CNx+HA
%C	39,16%	96,11%	91,90%	54,32%	58,48%
%H	3,74%	0,85%	0,37%	5,45%	4,63%
%N	0,49%	0,38%	2,25%	0,68%	1,15%
Razão C/H	10,47	113,07	248,37	9,96	12,63

Conclusões

•São necessárias quantidades diferentes de ácido húmico para formar uma suspensão estável para cada tipo de nanotubos estudados (MWNT > CN_x > SWNT);

•Em pH básico as dispersões são mais estáveis que em pH ácido;

•Na presença de eletrólitos, a estabilidade da suspensão é função da concentração do eletrólito (quanto maior a concentração, menor a estabilidade);

•A diminuição da razão de intensidade das bandas Raman D e G pode ser atribuída à supressão de defeitos, protagonizada pela presença do ácido húmico, indicando uma possível interação;

•Através da análise elementar pôde-se também confirmar que há interação entre os nanotubos e o ácido húmico, visualizada pela mudança da composição química das amostras, sobretudo a razão Carbono/Hidrogênio;

•Dada a complexidade química do solo, podemos esperar que os nanotubos se apresentem predominantemente associados aos vários tipos de compostos presentes.

. Gráfico de absorbância x razão NTC:HA para determinação da razão ótima.